优化Pytorch模型训练的小技巧

本文介绍了混合精度训练方法,即将32位训练转换为16位以提高效率,并展示了如何使用scaler进行操作。此外,还介绍了梯度积累技术,通过累加多个批次的梯度来减少内存消耗并保持较高的更新频率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://baijiahao.baidu.com/s?id=1695165163278178709&wfr=spider&for=pc

内容:

  1. 混合精度,将默认的32位训练转换为16位

scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()

2.进度条显示

pip install tqdm

3.梯度积累

梯度累加的工作原理是:以16个批的规模运行模型两次,将计算出的每个批的梯度累加起来,最后在这两次前向传播和梯度累加之后执行一个优化步骤。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值