[HOT 100] 1547. 切棍子的最小成本

1. 题目链接


1547. 切棍子的最小成本 - 力扣(LeetCode)


2. 题目描述


有一根长度为 n 个单位的木棍,棍上从 0n 标记了若干位置。长度为 6 的棍子可以标记如下:

给你一个整数数组 cuts ,其中 cuts[i] 表示你需要将棍子切开的位置。

你可以按顺序完成切割,也可以根据需要更改切割的顺序。

每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。

返回切棍子的 最小总成本 。

3. 题目示例


示例 1 :

输入:n = 7, cuts = [1,3,4,5]
输出:16
解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:

第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。
而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。

示例 2 :

输入:n = 9, cuts = [5,6,1,4,2]
输出:22
解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。

4. 解题思路


  1. 问题理解
    • 给定长度为n的木棒和一组切割点
    • 每次切割的成本等于当前木棒的长度
    • 需要找到切割顺序使总成本最小
  2. 关键思路
    • 将问题转化为区间DP问题
    • 添加虚拟切割点0和n简化问题
    • 按切割点位置排序确保子问题正确性
  3. 动态规划设计
    • 状态定义:f[i][j]表示切割区间i到j的最小成本
    • 状态转移:对于每个区间,尝试所有可能的中间切割点k
    • 初始化:相邻切割点区间成本为0(不需要切割)
  4. 计算顺序
    • 从小区间到大区间计算(i从大到小,j从小到大)
    • 确保计算f[i][j]时所有子问题f[i][k]和f[k][j]都已计算

5. 题解代码


class Solution {
    public int minCost(int n, int[] cuts) {
        // 1. 预处理切割点数组
        Arrays.sort(cuts);  // 先对切割点排序
        int m = cuts.length + 2;  // 新增首尾两个虚拟切割点
        int[] newCuts = new int[m];
        System.arraycopy(cuts, 0, newCuts, 1, m - 2);  // 复制原切割点到中间
        newCuts[0] = 0;  // 添加起始点0(虽然代码中没显式写,但newCuts[m-1]=n暗示了)
        newCuts[m - 1] = n;  // 添加终点n

        // 2. 动态规划表初始化
        int[][] f = new int[m][m];  // f[i][j]表示从newCuts[i]到newCuts[j]的最小成本
        
        // 3. 动态规划填表
        for (int i = m - 3; i >= 0; i--) {  // 从倒数第三个切割点开始向前
            for (int j = i + 2; j < m; j++) {  // j至少比i大2,保证中间有切割点
                int res = Integer.MAX_VALUE;
                // 尝试所有可能的中间切割点k
                for (int k = i + 1; k < j; k++) {
                    res = Math.min(res, f[i][k] + f[k][j]);
                }
                // 当前段的最小成本 = 子问题最小成本 + 当前段长度
                f[i][j] = res + newCuts[j] - newCuts[i];
            }
        }
        
        // 4. 返回整个木棒的最小切割成本
        return f[0][m - 1];  // 从第一个切割点(0)到最后一个切割点(n)
    }
}


6. 复杂度分析


时间复杂度:O(m³)

  • 三重循环:
    • 外层i循环:O(m)
    • 中层j循环:O(m)
    • 内层k循环:O(m)
  • 其中m = cuts.length + 2

空间复杂度:O(m²)

  • 二维DP表f[m][m]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值