1. 题目链接
2. 题目描述
有一根长度为 n
个单位的木棍,棍上从 0
到 n
标记了若干位置。长度为 6 的棍子可以标记如下:
给你一个整数数组 cuts
,其中 cuts[i]
表示你需要将棍子切开的位置。
你可以按顺序完成切割,也可以根据需要更改切割的顺序。
每次切割的成本都是当前要切割的棍子的长度,切棍子的总成本是历次切割成本的总和。对棍子进行切割将会把一根木棍分成两根较小的木棍(这两根木棍的长度和就是切割前木棍的长度)。请参阅第一个示例以获得更直观的解释。
返回切棍子的 最小总成本 。
3. 题目示例
示例 1 :
输入:n = 7, cuts = [1,3,4,5]
输出:16
解释:按 [1, 3, 4, 5] 的顺序切割的情况如下所示:
第一次切割长度为 7 的棍子,成本为 7 。第二次切割长度为 6 的棍子(即第一次切割得到的第二根棍子),第三次切割为长度 4 的棍子,最后切割长度为 3 的棍子。总成本为 7 + 6 + 4 + 3 = 20 。
而将切割顺序重新排列为 [3, 5, 1, 4] 后,总成本 = 16(如示例图中 7 + 4 + 3 + 2 = 16)。
示例 2 :
输入:n = 9, cuts = [5,6,1,4,2]
输出:22
解释:如果按给定的顺序切割,则总成本为 25 。总成本 <= 25 的切割顺序很多,例如,[4, 6, 5, 2, 1] 的总成本 = 22,是所有可能方案中成本最小的。
4. 解题思路
- 问题理解:
- 给定长度为n的木棒和一组切割点
- 每次切割的成本等于当前木棒的长度
- 需要找到切割顺序使总成本最小
- 关键思路:
- 将问题转化为区间DP问题
- 添加虚拟切割点0和n简化问题
- 按切割点位置排序确保子问题正确性
- 动态规划设计:
- 状态定义:f[i][j]表示切割区间i到j的最小成本
- 状态转移:对于每个区间,尝试所有可能的中间切割点k
- 初始化:相邻切割点区间成本为0(不需要切割)
- 计算顺序:
- 从小区间到大区间计算(i从大到小,j从小到大)
- 确保计算f[i][j]时所有子问题f[i][k]和f[k][j]都已计算
5. 题解代码
class Solution {
public int minCost(int n, int[] cuts) {
// 1. 预处理切割点数组
Arrays.sort(cuts); // 先对切割点排序
int m = cuts.length + 2; // 新增首尾两个虚拟切割点
int[] newCuts = new int[m];
System.arraycopy(cuts, 0, newCuts, 1, m - 2); // 复制原切割点到中间
newCuts[0] = 0; // 添加起始点0(虽然代码中没显式写,但newCuts[m-1]=n暗示了)
newCuts[m - 1] = n; // 添加终点n
// 2. 动态规划表初始化
int[][] f = new int[m][m]; // f[i][j]表示从newCuts[i]到newCuts[j]的最小成本
// 3. 动态规划填表
for (int i = m - 3; i >= 0; i--) { // 从倒数第三个切割点开始向前
for (int j = i + 2; j < m; j++) { // j至少比i大2,保证中间有切割点
int res = Integer.MAX_VALUE;
// 尝试所有可能的中间切割点k
for (int k = i + 1; k < j; k++) {
res = Math.min(res, f[i][k] + f[k][j]);
}
// 当前段的最小成本 = 子问题最小成本 + 当前段长度
f[i][j] = res + newCuts[j] - newCuts[i];
}
}
// 4. 返回整个木棒的最小切割成本
return f[0][m - 1]; // 从第一个切割点(0)到最后一个切割点(n)
}
}
6. 复杂度分析
时间复杂度:O(m³)
- 三重循环:
- 外层i循环:O(m)
- 中层j循环:O(m)
- 内层k循环:O(m)
- 其中m = cuts.length + 2
空间复杂度:O(m²)
- 二维DP表f[m][m]