概述
AI 大模型越来越好用,真正把它落地到工作的关键,往往不是“会不会提问”,而是“能不能把重复的事情自动化”。职场里凡是同一件事要重复做三次以上,基本都值得交给工作流来处理。就我观察,当下最接地气、普惠的 AI 使用场景之一,就是用工作流把零散的动作串起来,节省时间、降低差错、稳定产出。面向未来,熟练运用工作流解决实际问题,会成为极其值钱的能力。而在可选工具里,n8n 是当前上手门槛低、扩展性强、生态活跃的一员。本文的目标很简单:10 分钟内在本机跑起 n8n,打开网页端,搭建一个返回 {"message":"Hello, n8n!"}
的接口。
安装启动
2.1 环境准备
- 一台 Windows / macOS / Linux 电脑,已安装 Docker。
- Windows / macOS:推荐 Docker Desktop。
- Linux:安装 Docker Engine + Compose v2。
- 打开命令行(以 Windows 为例):点击开始菜单,搜索 CMD 并打开。
2.2 一键启动
- 在任意空文件夹中创建
docker-compose.yml
,粘贴如下内容:
services:
n8n:
image: docker.n8n.io/n8nio/n8n:latest
ports:
- "5678:5678" # 如需更换本机端口,改前半段,例如 "8080:5678"
volumes:
- n8n_data:/home/node/.n8n
restart: unless-stopped
volumes:
n8n_data:
-
- 官方镜像为
n8nio/n8n
,官方文档示例使用注册表前缀docker.n8n.io/n8nio/n8n
。 - 端口映射
5678:5678
(宿主:容器);想换本机端口改前半段,如8080:5678
。 - 将数据持久化到命名卷
n8n_data
,挂载到容器内/home/node/.n8n
。
- 官方镜像为
- 启动/停止/查看
# 后台启动
docker compose up -d
# 查看容器状态
docker compose ps
# 停止并移除容器(数据卷仍保留)
docker compose down
-
docker-compose.yml
这文件我这里放到电脑的下载目录下,所以打开cmd终端后,直接输入命令“C:\Users\xxxx\Downloads” 进入工作工作。
-
- 运行命令就会自动去拉n8n取代码部署
-
- 后续n8n的启动都可以在docker desktop里面启动。
2.3 首次访问
- 在浏览器访问 http://localhost:5678,按界面提示创建管理员账号,这里需要使用邮箱登录即可,很简单,按照流程走就可以正常使用了。
实战演练
我们来做一个“最小可用”的 API 工作流:访问一个 URL,返回{"message":"Hello, n8n!"}
🔔
要点: Webhook 节点 触发工作流; Respond to Webhook 节点 决定返回什么。Webhook 的响应模式有三种: Immediately / When Last Node Finishes / Using ‘Respond to Webhook’ Node 。本例使用第三种,最直观可控。
- 进入 n8n,点击 New 新建工作流。
- 添加 Webhook 节点。
-
- HTTP Method 选
GET
; Path 可填/hello
(或任意路径)。 - Respond 选 Using 'Respond to Webhook' Node (交由响应节点决定返回)。
- 记录节点顶部显示的 Test URL 与 Production URL (测试与生产两套地址,行为不同)。
- HTTP Method 选
- 添加 Code 节点(可在搜索里输入 Code)。
- 在 Code 中粘贴如下代码。
return [{ message: 'Hello, n8n!' }];
- 添加 Respond to Webhook 节点。
-
- Respond With 选择 JSON ;
- Response Body 填表达式:
={{ $json }}
(把上一节点输出原样返回); - (可选) Response Code 设为
200
。
- 连线: Webhook → Code → Respond to Webhook 。
- 点击 Execute workfow按钮运行工作流 。
- 使用浏览器打开:localhost:5678/webhook-test/hello。
- 你应看到
{"message":"Hello, n8n!"}
的响应。
- 你应看到
- 看到界面所有节点全都变绿色,说明工作流执行成功。
总结
工作流的价值在于把重复劳动自动化,把时间留给真正需要创意与判断的部分。n8n 以低门槛、可视化和强扩展著称,配合 Docker 可以做到零 Node.js、零源码的一键部署;从 Webhook → Code → Respond to Webhook 的“Hello, n8n!”开始,你已经具备了把任意输入变成结构化输出的基本能力。