概述
零基础也能把自动化玩明白:本篇将从“为什么要做自动化”出发,带你在 n8n 里新建第一个工作流,只用两个核心节点——Schedule Trigger(定时器) 与 HTTP Request。你会学会如何按固定频率触发流程、向接口发起请求、在右侧面板查看返回数据,并初步认识“把上游输出传给下游”的表达式用法(如 {{$json.xxx}}
)。若有需要,我们还会顺手接入一个 AI Agent 做轻量处理,感受一下“HTTP 数据 → 大模型加工”的基本路径。读完本篇,你能在本机把流程跑通并看到真实返回,为下篇“把数据写入飞书多维表格(Bitable)”打好地基。
目标:从零新建一个工作流,按设定的时间触发 → 发起 HTTP 请求获取数据/文本 →(可选)AI 大模型加工 → 清洗文本 → 写入飞书多维表格。全流程可视化、可调试、可复用。
配置工作流
2.1 创建工作流
打开 n8n 后,有三种常见方式新建工作流(任选其一即可):
- 顶部导航点击 New;
- 画布空白处点击 + 快捷按钮;
- 侧栏搜索框输入关键字后,直接从模板/节点开始搭。
命名你的工作流,方便后续复用与分享。
2.2 添加定时触发器
- 点击 ➕ 号,在右侧搜索 trigger 找到 Schedule Trigger。
- 按需设置执行周期:如每小时、每天 9:00、或使用 CRON 表达式。
- 配置完成后关闭设置面板,节点会以设定频率触发后续流程。
小贴士:初学者优先选“每分钟/每小时/每天固定时间”,先让流程“跑起来”,再精调 Cron。
2.3添加 HTTP 请求节点
- 继续点击 +,选择 HTTP Request。
- 配置请求方法(GET/POST)、目标 URL、查询参数或请求体、Headers 等。
- 点击 Execute node / Execute step 进行单节点测试,右侧可查看返回的 Status / Headers / Body。
- 如果你需要从响应里取字段,后续节点可直接用表达式引用,如
{{$json.result.xxx}}
。
文末有一个“API 接口推荐(免费)”,用于测试非常合适。
2.4 接入大模型
这一步非必需。你的最小可用流程只靠“定时器 + HTTP + 飞书表格”就能完成。若你想让文本更通顺、做摘要或把字段改写,AI Agent 非常好用。
- 点击 + → AI → 选择 AI Agent。
- 在 Prompt 中写提示词;左侧可以把上游节点的字段直接拖入提示词框,作为上下文输入。
- 选择底层模型(示例中为 DeepSeek)。
- 首次使用需创建新的凭据(API Key)。
-
- 注意:调用第三方大模型可能产生费用(通常几分钱一次),请先在提供方控制台充值。
- 输入 DeepSeek 的 API Key 并保存。
- 模式选择“对话模式”即可(无需“深度思考”)。
- 点击 Execute step 测试,确认右侧输出正常。
你文中提到的“中文提示词自动转英文”的浏览器插件(沉浸式翻译),确实可以提升英文模型的提示词质量,下面“扩展推荐”有说明。
概述
到这里,我们已经完成了:① 新建工作流;② 配置定时触发;③ 发起 HTTP 请求并验证响应;④接入大模型。你已经体验到:把“重复动作”拆成节点、用数据线连接、在每步可视化调试的感觉。**下一步(下篇)**我们将以“把结果沉淀为可用数据”为目标,带你完成:安装飞书社区节点、创建 Bitable 与获取 Token/表 ID、在飞书开发者后台申请并发布应用与权限、在 n8n 中配置凭据与字段映射、用 Code 节点清洗大模型输出,最后一键写入表格并激活工作流。准备好你的飞书云文档与开发者后台账号,我们在下篇正式收尾整个闭环。