概述
延续上篇的成果:你的 n8n 工作流已能定时拉取 HTTP 数据(可选经 AI Agent 处理)。本篇将把数据可靠落地到飞书多维表格。我们会先安装 Feishu/Lark 社区节点,再在飞书云文档创建目标表,读取 URL 中的 表格 Token 与表 ID;随后在飞书开发者后台创建自建应用、获取 App ID / App Secret、发布并开通 Bitable 读写权限。帮助你把 Demo 变成可复用的生产小工具。
构建工作流
2.5 安装飞书多维表格节点
- 点击 n8n 右上角 Settings(齿轮图标)。
- 选择 Community nodes → Install。
- 点击 Browse 搜索“feishu”或“lark”,在列表中找到与你需求匹配的包名(你示例中给出了一个包名示例,实际以你搜索结果为准)。
- 复制目标节点包名,粘贴到安装输入框,点击安装。
- 回到工作流画布,点击 + 搜索“Feishu / Lark”,添加 多维表格—新增记录 节点。
提示:社区包名以你本机可见为准,不同维护者的包名可能略有差异;安装前优先查看下载量、维护活跃度与说明文档。
2.6 创建飞书多维表格
- 在 飞书云文档创建一个 多维表格(Bitable)(建议使用云文档,避免本地文档路径导致的鉴权问题)。
- 先把表头/字段类型设计好(文本、富文本、数字、日期、单选/多选等)。
- 复制该表格页面 URL,其中包含 表格 Token 与 表 ID,后面配置 n8n 节点会用到。
2.7 获取飞书 API Key 与权限
- 访问飞书开发者后台:open.feishu.cn/app,创建 企业自建应用。
- 在 凭证与基础信息中获取 App ID / App Secret(即 API 凭证)。
- 发布应用后凭证才会生效(很关键)。
- 在“权限管理”中勾选与 多维表格相关的读写权限(建议按需最小化授权)。
2.8 在 n8n 配置飞书多维表格节点
- 打开新增记录节点,先新建并保存 凭据(填入 App ID / App Secret)。
- 点击保存,可以看到绿色框内显示连接成功后,填入 表格 Token、表 ID。
- 在“字段映射”中把上游数据填到对应列。你给出的示例表达式如下(放在节点的请求体/字段映射中):
{
"fields": {
"Flower": "{{ $('HTTP Request').item.json.result.cnflower }}",
"Flower_language1": "{{ $('HTTP Request').item.json.result.enflower }}",
"Flower_language2": "{{ $('HTTP Request').item.json.result.flowerlang }}",
"Flower_language3": "{{ $('HTTP Request').item.json.result.flowerprov }}",
"Short_story": "{{ $json.cleanedOutput }}"
}
}
注意:字段类型需与飞书多维表格的列类型一致;表达式中引用的路径要与实际返回结构匹配。
2.9 添加代码节点
你的截图中出现“字段无法解析”的报错,通常是因为 AI Agent 输出带有换行/多余空格/格式化符号,导致后续节点不认。在 AI Agent 和飞书节点之间插入 Code(JavaScript)节点。
示例代码如下:
// 清理文本中的特殊字符,并只返回 cleanedOutput
const result = [];
for (const item of $input.all()) {
const originalText = item.json.output; // AI Agent 的文本输出
const cleanedText = String(originalText || '')
.replace(/\n/g, ' ') // 换行 -> 空格
.replace(/\t/g, ' ') // 制表符 -> 空格
.replace(/\s+/g, ' ') // 多个空白 -> 一个空格
.trim(); // 去首尾空白
result.push({ json: { cleanedOutput: cleanedText } });
}
return result;
然后把飞书节点里需要的文本字段改为引用 {{$json.cleanedOutput}}
,再点 Execute step 测试,应该就能顺利写入。
2.10 最终测试与“交作业”
- 在画布上点击 Execute workflow(或单独执行节点)观察节点变绿。
- 打开你的飞书多维表格,确认新增了一条记录。
- 若使用了定时器,等到下一个时间点观察是否自动写入;一切正常即可 Activate 工作流常驻运行。
- 恭喜你,第一个可用的 n8n 工作流搭建完成,撒花 ✿✿ヽ(°▽°)ノ✿!
总结
恭喜你完成从“定时触发 → 拉取数据 →(可选)AI 处理 → 清洗文本 → 写入飞书表格 → 激活上线”的端到端自动化闭环。现在,你已具备将零散动作沉淀为可复用流程的能力:把触发器改成 Schedule/Webhook、把数据源从一个接口拓展到多个 API、把落地端从 Bitable 延伸到邮件、IM、数据库与知识库。欢迎在评论区“交作业”晒出你的第一个自动化模板,也把卡壳点抛出来,我会继续补充范例与排错清单。自动化没那么难,关键是从第一个可用的小闭环开始。