文章目录

01 – 为什么从 Workflow 出发更可控?
相比直接构建一套复杂的 Agent 系统,Workflow 有几个天然优势:
- 流程边界清晰:可控性高,执行路径明确,有固定起止。
- 工程路径稳定:已有成熟工具支持,可快速上线系统。
- 可插入智能节点:每个节点都可以通过 LLM 进行增强(如意图识别、文本生成、信息抽取等)。
- 便于组织托管与权限控制:业务流程天然带有权限、角色控制机制,方便部署到实际场景。
Workflow 是一个稳定的地基,在这个基础上逐步 Agent 化,比从零搭建要来得更“长线安全”。
02 – 什么是 Agent 化的升级过程?
一个完整的 Agent 系统往往具备以下核心能力:
- 感知能力:理解用户意图、环境上下文(对话理解、状态持久化、外部知识调用等)
- 规划能力:根据目标拆解任务、组织工具、设定执行路径
- 执行能力:调用外部系统完成任务(API 调用、流程调度、UI 交互)
- 自适应能力:对失败做出恢复、调整策略或优化路径
以下是从 Workflow 到 Agent 的四个演进阶段示例:
阶段 | 特征描述 |
---|---|
阶段 1:工作流节点增强 | LLM 参与流程的某个节点,如内容生成、语义分析 |
阶段 2:局部任务自动化 | LLM 负责一段任务路径,例如多轮对话驱动的报名表创建 |
阶段 3:智能流程编排 | LLM 可根据目标动态规划任务路径,完成流程搭建 |
阶段 4:多智能体协作 | 多个 Agent 具备角色分工,共同完成复杂任务系统 |
03 – MCP vs Function Call:两种集成方式的差异
当我们引入 LLM 与工具系统对接时,有两个主流思路:
3.1 Function Call
-
原理:LLM 输出结构化调用(函数名 + 参数),由系统执行
-
示例:GPT function calling、LangChain tool use 等
-
优点:
- 快速、轻量、结构化
- 与传统系统集成成本低
-
劣势:
- 缺乏任务记忆与上下文调度能力
- 难以执行多步任务
- 一旦调用失败,恢复能力弱
3.2 MCP(Memory–Controller–Planner)
一种将 LLM 系统拆分为「记忆–规划–执行」三大组件的架构模式,用于提升多步任务的自适应和恢复能力
MCP(Memory–Controller–Planner)
一种将 LLM 系统拆分为「记忆–规划–执行」三大组件的架构模式,用于提升多步任务的自适应和恢复能力。
MCP(Model Context Protocol)
一种对话式 AI Agent 与外部工具或系统交互的协议规范,约定如何传递上下文、指令与数据。
它们虽然都缩写为“MCP”,但一个是系统内部架构设计,一个是外部调用的通信协议,在概念和应用上并无直接关联,只是术语重名。
-
结构:类似小型操作系统
- Memory:存储中间状态、已完成任务、外部环境信息
- Planner:根据目标和记忆拆解任务,设定执行路径
- Controller:调度执行,并对失败做出调整
- Executor:具体调用 API、控制系统动作
-
优点:
- 更接近人类认知
- 支持多轮、动态、自恢复能力
- 可做复杂规划与反思优化
-
缺点:
- 系统复杂度显著增加
- 调试难度和响应时间提升
- 部署成本更高,不适合所有场景
04 – 如何在 Workflow 上逐步实现 Agent 能力?
我们推荐的“中道路径”三层演进如下:
-
Step 1:节点智能化
- 在固定流程节点插入 LLM,如智能推荐字段、自动摘要、意图分析等。
-
Step 2:局部任务代理
- 让某些任务由 LLM 完成,如自动生成表单、自动审核用户信息等。
-
Step 3:引入 Agent 调度
-
在任务模块内部使用小型 MCP 架构:
- 多轮对话创建复杂内容
- 失败后多策略重试
- 结合用户历史行为调整路径
-
05 – 最后的建议
- 对稳定性、可控性要求高的系统,建议以 Workflow 为主架构,逐步智能化;
- 对探索性、开放式任务多的系统,可考虑构建小规模 MCP Agent 并辅以工具调度;
- 绝大多数企业场景不需要“通用智能体”,而是“具备 Agent 特质的系统”。
06 – 演进实践案例
场景 A:客服流程智能升级(Step 1 节点智能化)
- 背景:传统客服工单流程,需要人工分类与标签,耗时且易出错。
- 解决方案:在「工单分类」节点引入 LLM 自动识别用户意图与问题类型,生成分类标签;对“不确定”案例触发人工复核。
- 效果:工单分发效率提升 60%,客服响应时长平均减少 30%。
场景 B:活动报名系统自动化(Step 2 局部任务代理)
- 背景:线上活动报名需要多轮填写信息、校验格式、发送确认邮件。
- 解决方案:使用 LLM 驱动的对话 Agent,询问用户所需字段(姓名、联系方式、意向场次等),自动生成报名表单并通过 API 提交;生成确认邮件并发送。
- 效果:用户填写完成率提高至 95%,人工干预次数减少 80%。
场景 C:电商智能流程编排(Step 3 引入 Agent 调度)
-
背景:电商订单处理流程涉及风险验证、库存检查、物流调度、异常补偿等多环节,且可能需动态调整。
-
解决方案:构建小型 MCP:
- Memory:存储订单状态、用户信用信息、库存情况
- Planner:根据订单优先级自动拆解任务(风险校验→库存锁定→物流选配)
- Controller:监控各环节执行结果,失败时切换备用策略(如切换仓库)
- Executor:调用支付、库存、物流等微服务
-
效果:整体订单处理成功率提升至 99.5%,异常恢复时间由平均 2 小时降至 10 分钟。