LLM - 分步演进:如何将 Workflow 打造成 AI Agent


在这里插入图片描述

01 – 为什么从 Workflow 出发更可控?

相比直接构建一套复杂的 Agent 系统,Workflow 有几个天然优势:

  • 流程边界清晰:可控性高,执行路径明确,有固定起止。
  • 工程路径稳定:已有成熟工具支持,可快速上线系统。
  • 可插入智能节点:每个节点都可以通过 LLM 进行增强(如意图识别、文本生成、信息抽取等)。
  • 便于组织托管与权限控制:业务流程天然带有权限、角色控制机制,方便部署到实际场景。

Workflow 是一个稳定的地基,在这个基础上逐步 Agent 化,比从零搭建要来得更“长线安全”。

02 – 什么是 Agent 化的升级过程?

一个完整的 Agent 系统往往具备以下核心能力:

  1. 感知能力:理解用户意图、环境上下文(对话理解、状态持久化、外部知识调用等)
  2. 规划能力:根据目标拆解任务、组织工具、设定执行路径
  3. 执行能力:调用外部系统完成任务(API 调用、流程调度、UI 交互)
  4. 自适应能力:对失败做出恢复、调整策略或优化路径

以下是从 Workflow 到 Agent 的四个演进阶段示例:

阶段特征描述
阶段 1:工作流节点增强LLM 参与流程的某个节点,如内容生成、语义分析
阶段 2:局部任务自动化LLM 负责一段任务路径,例如多轮对话驱动的报名表创建
阶段 3:智能流程编排LLM 可根据目标动态规划任务路径,完成流程搭建
阶段 4:多智能体协作多个 Agent 具备角色分工,共同完成复杂任务系统

03 – MCP vs Function Call:两种集成方式的差异

当我们引入 LLM 与工具系统对接时,有两个主流思路:

3.1 Function Call

  • 原理:LLM 输出结构化调用(函数名 + 参数),由系统执行

  • 示例:GPT function calling、LangChain tool use 等

  • 优点

    • 快速、轻量、结构化
    • 与传统系统集成成本低
  • 劣势

    • 缺乏任务记忆与上下文调度能力
    • 难以执行多步任务
    • 一旦调用失败,恢复能力弱

3.2 MCP(Memory–Controller–Planner)

一种将 LLM 系统拆分为「记忆–规划–执行」三大组件的架构模式,用于提升多步任务的自适应和恢复能力

MCP(Memory–Controller–Planner)

一种将 LLM 系统拆分为「记忆–规划–执行」三大组件的架构模式,用于提升多步任务的自适应和恢复能力。

MCP(Model Context Protocol)

一种对话式 AI Agent 与外部工具或系统交互的协议规范,约定如何传递上下文、指令与数据。

它们虽然都缩写为“MCP”,但一个是系统内部架构设计,一个是外部调用的通信协议,在概念和应用上并无直接关联,只是术语重名。

  • 结构:类似小型操作系统

    1. Memory:存储中间状态、已完成任务、外部环境信息
    2. Planner:根据目标和记忆拆解任务,设定执行路径
    3. Controller:调度执行,并对失败做出调整
    4. Executor:具体调用 API、控制系统动作
  • 优点

    • 更接近人类认知
    • 支持多轮、动态、自恢复能力
    • 可做复杂规划与反思优化
  • 缺点

    • 系统复杂度显著增加
    • 调试难度和响应时间提升
    • 部署成本更高,不适合所有场景

04 – 如何在 Workflow 上逐步实现 Agent 能力?

我们推荐的“中道路径”三层演进如下:

  1. Step 1:节点智能化

    • 在固定流程节点插入 LLM,如智能推荐字段、自动摘要、意图分析等。
  2. Step 2:局部任务代理

    • 让某些任务由 LLM 完成,如自动生成表单、自动审核用户信息等。
  3. Step 3:引入 Agent 调度

    • 在任务模块内部使用小型 MCP 架构:

      • 多轮对话创建复杂内容
      • 失败后多策略重试
      • 结合用户历史行为调整路径

05 – 最后的建议

  • 稳定性、可控性要求高的系统,建议以 Workflow 为主架构,逐步智能化;
  • 探索性、开放式任务多的系统,可考虑构建小规模 MCP Agent 并辅以工具调度;
  • 绝大多数企业场景不需要“通用智能体”,而是“具备 Agent 特质的系统”。

06 – 演进实践案例

场景 A:客服流程智能升级(Step 1 节点智能化)

  • 背景:传统客服工单流程,需要人工分类与标签,耗时且易出错。
  • 解决方案:在「工单分类」节点引入 LLM 自动识别用户意图与问题类型,生成分类标签;对“不确定”案例触发人工复核。
  • 效果:工单分发效率提升 60%,客服响应时长平均减少 30%。

场景 B:活动报名系统自动化(Step 2 局部任务代理)

  • 背景:线上活动报名需要多轮填写信息、校验格式、发送确认邮件。
  • 解决方案:使用 LLM 驱动的对话 Agent,询问用户所需字段(姓名、联系方式、意向场次等),自动生成报名表单并通过 API 提交;生成确认邮件并发送。
  • 效果:用户填写完成率提高至 95%,人工干预次数减少 80%。

场景 C:电商智能流程编排(Step 3 引入 Agent 调度)

  • 背景:电商订单处理流程涉及风险验证、库存检查、物流调度、异常补偿等多环节,且可能需动态调整。

  • 解决方案:构建小型 MCP:

    • Memory:存储订单状态、用户信用信息、库存情况
    • Planner:根据订单优先级自动拆解任务(风险校验→库存锁定→物流选配)
    • Controller:监控各环节执行结果,失败时切换备用策略(如切换仓库)
    • Executor:调用支付、库存、物流等微服务
  • 效果:整体订单处理成功率提升至 99.5%,异常恢复时间由平均 2 小时降至 10 分钟。


在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小工匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值