LLM - 构建“三层架构“的Agent开发框架


在这里插入图片描述

一、概述

随着大语言模型(LLM)的成熟,AI Agent已从概念验证阶段迈向大规模应用。根据 Gartner 报告,至2025年将有超过50%企业部署智能体优化流程,2028年15%的决策将由Agent完成。面对多样化场景,如何在“实验室–生产”之间架起桥梁,成为开发者的首要课题。

在这里插入图片描述

二、“三层架构”设计:稳固Agent基础

一个高效的Agent,必须具备“感知—决策—执行”三大核心层,彼此协同,构建类脑智能。

在这里插入图片描述

1. 感知层 :Agent的"眼耳鼻舌"

  • 意图识别优化

    • 结合上下文理解、实体识别、关系抽取;
    • 引入领域知识图谱,提升专业场景下的召回与精准度。
  • 环境感知增强

    • API 集成实时获取天气、行情、交通等;
    • 设计数据质量评估,保障时效与准确。

2. 决策层:Agent的“大脑中枢”

  • 任务分解

    • 目标识别 → 依赖解析 → 自适应分解,动态调整粒度。
  • 执行路径规划

    • 基于搜索算法、约束求解;
    • 对复杂场景可采用蒙特卡洛树搜索(MCTS)。
  • 决策优化

    • 记忆增强推理:构建外部经验库;
    • 不确定性处理与多轮策略调整。

3. 执行层:Agent的“手脚”

  • 工具调用管理

    • 统一注册中心、参数校验、异常处理;
    • 工具知识库记录最佳实践与使用限制。
  • 状态管理

    • 持久化存储执行状态,支持回滚与并发控制。
  • 结果验证

    • 多维度评估:功能正确性、性能、用户体验;
    • 分级验证策略,按风险选用不同强度手段。

三、工具集成策略

构建一个可扩展的工具生态,是赋能Agent完成专业任务的关键, 打造Agent的能力矩阵。

API 标准化示例
以微软 Azure AI Studio 的工具描述语言为例,通过统一的接口规范,实现一致化调用:

// 工具描述示例
{
  "name": "WeatherService",
  "description": "获取指定城市的天气预报信息",
  "parameters": {
    "type": "object",
    "properties": {
      "city": {
        "type": "string",
        "description": "城市名称,如'北京'、'上海'"
      },
      "days": {
        "type": "integer",
        "description": "预报天数,范围1-7",
        "default": 3
      }
    },
    "required": ["city"]
  },
  "returns": {
    "type": "object",
    "properties": {
      "forecast": {
        "type": "array",
        "items": {
          "type": "object",
          "properties": {
            "date": {"type": "string"},
            "temperature": {"type": "object"},
            "weather": {"type": "string"}
          }
        }
      }
    }
  }
}
  • 设计工具注册中心,支持动态上/下线;
  • 参数验证与响应处理框架,屏蔽底层差异;
  • 抽象层封装,提高开发效率。

四、小结

  1. 多模态交互
  2. 自主与主动学习:从被动响应转向主动服务,持续学习用户行为,精准预测需求。
  3. 深度人机协作:Agent承担重复与数据处理,人类专注创造与决策,形成互补优势。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小工匠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值