RVM33 -1

Quasi-delay-insensitive circuits are Turing-completef

Rajit Manohar and Alain J. Martin

Department of Computer Science
California Institute of Technology
Pasadena, CA 91125.

November 17, 1995

Abstract: Quasi-delay-insensitive (QDI) circuits are those whose correct oper-
ation does not depend on the delays of operators or wires, except for certain wires
that form isochronic forks. In this paper we show that quasi-delay-insensitivity,
stability and non-interference, and strong confluence are equivalent properties of a
computation. In particular, this shows that QDI computations are deterministic.
We show that the class of Turing-computable functions have QDI implementations
by constructing a QDI Turing machine.

Keywords: Quasi-delay-insensitive circuits; Turing machines; Determinism; Con-
fluence; Stability

1. Introduction

There has been a renewal of interest in the design of asynchronous circuits, motivated by the potential
benefits of designing circuits in an asynchronous fashion. Asynchronous circuits exhibit average case behavior
and can therefore be optimized in a data-dependent fashion. Another benefit is that the portion of the circuit
involved in the computation is the only part that dissipates power. As a result, asynchronous design methods
are relevant for applications where low power consumption is important.

Various models of CMOS circuits are used to hide the electrical properties of transistors, which would
otherwise complicate the design process. These models typically assume that voltages represent boolean
values, and that a transistor can be thought of as a switch. Delay-insensitive circuit design assumes that
the correct operation of a circuit is independent of the delay in operators and wires. It was shown in [3]
that the class of circuits that are entirely delay-insensitive is quite limited. Speed-independent circuit design
assumes that operators can take an arbitrary amount of time to switch, but that wires have negligible delays
compared to operators. Self-timed circuits assume that wires have negligible delay compared to gates in
local isochronic regions [6]. Quasi-delay-insensitive circuit design assumes that both operators and wires can
take an arbitrary time to switch, except for certain wires that form isochronic forks [2].

In this paper we show that the class of QDI circuits is Turing complete (modulo finite memory), i.e.,
any recursive function can be computed with QDI circuits. We show that state transitions in QDI circuits
must exhibit the diamond property and, as a consequence, all QDI computations are entirely deterministic.
In particular, this implies that one cannot build a QDI arbiter.

Strong confluence is closely related to the property of semi-modularity [5]. However, [5] only considers
semi-modularity in the context of sequential machines. In addition, the computations considered are not
semi-modular at every state, but only at some states. In [7], it is shown that hazard-free speed-independent
asynchronous circuits are deterministic, but under a different gate model. In particular only AND, OR,
NOT gates and C-elements are considered. In addition, gates that cannot be directly realized in CMOS are
permitted in their model, since they allow gates with inverted inputs.

This paper is organized as follows. We introduce our circuit model and explain what a QDI circuit is in

1 The research described in this report was sponsored by the Advanced Research Projects Agency and monitored by the Office of
Army Research.

RVM33 -2

terms of this model. We then prove necessary and sufficient conditions for a circuit to be QDI, and discuss
various consequences of this. We give the construction of a QDI Turing machine with a semi-infinite tape
as a concrete demonstration of the Turing-completeness of this class of circuits.

2. Circuit model

A CMOS circuit is a network of gates, where each gate can have an arbitrary number of inputs and one
output. We assume that all circuits are closed: each variable of the circuit is the input of a gate and the
output of a gate. An open circuit can be transformed into a closed one by representing the environment of
the circuit as gates.

The output of a gate is connected to the low voltage level (used to represent the boolean false) via a
transistor network (known as the pull-down), and to the high voltage level (used to represent the boolean
true) via another transistor network (known as the pull-up). These two transistor networks together form

the gate, as shown in Fig. 1.

High voltage level

[

pull-up network

}—» gate output

pull-down network

Low voltage level

Fig. 1: Gate model.

A transistor is modelled as a switch that establishes or cuts electrical connections between nodes,
depending on the voltage of the gate of the transistor. A pull-up/pull-down network is modelled as a
network of switches that determine if two nodes are connected or disconnected. This network is represented
as a boolean function which is true just when the two nodes of interest are connected.

Since the pull-up and pull-down networks are modelled as boolean functions, a gate can be represented
by a pair of boolean functions. Such a representation can be expressed using production rules [2].

Definition. (production rule) (1)
A production rule (PR) is a construct of the form G +— t, where t is a simple assignment (a transition),

and G is a boolean expression known as the guard of the PR.

A gate with output z, pull-up network BT, and pull-down network B~ corresponds to the production rules
Bt — 27
B~V z|
zT and x| are abbreviations for the assignments z := true and z := false respectively. We use the
predicate R on transitions to denote the result of a transition: R(z7)=z and R(z|)=-z. For example, a
Muller C-element with inputs e and b and output ¢ would be represented by production rules
aAb — cT

—aA=b — ¢l

Definition. (production rule set) (2)

A production rule set is the concurrent composition of all the production rules in the set.

RVM33 -3

A production rule set is used to describe a network of gates.

Definition. (execution) (3)

An execution of a production rule G +— t is an unbounded sequence of firings. A firing of G +— t when
G is true amounts to the execution of t, and a firing with G false amounts to a skip. The firing of a
production rule in a state where G A ~R(t) holds is said to be effective; otherwise, the firing is said to be
vacuous. The execution of a production rule set corresponds to the weakly fair concurrent composition of

the individual production rules in the set.

Although one could assume that the transitions on wires are instantaneous, a CMOS circuit does not
have this property. We make the weaker assumption that transitions on wires are monotonic. Since we make
this assumption, we insist that no production rule is self-invalidating.

Definition. (self-invalidating production rule) (4)
A production rule G — t is said to be self-invalidating when R(t)=-G.

A self-invalidating production rule corresponds to a gate whose output transition disabled itself.

If the output of a gate is at the low voltage level, it can change to the high voltage level when the
pull-up network becomes conducting. This can happen as a result of the environment changing some input
to the gate. If the input of the gate can change in a manner that makes the pull-up network non-conducting
before the output of the gate changes, the circuit is said to exhibit a hazard since the circuit could have a
glitch on the output of the gate.

Definition. (non-interference) (5)
The production rules BT — z1 and B~ +— z| are said to be non-interfering in a computation if and
only if ~BT V =B~ is an invariant of the computation. A production rule set is non-interfering if every

production rule in the set is non-interfering.

Let Bt — z1 and B~ — z| be a pair of production rules that define the gate for z. If B¥ A B~ were true at
any point in the computation, the result at the circuit level would correspond to connecting the high voltage
level to the low voltage level—a short circuit! Non-interference guarantees that such a short-circuit cannot
occur. (Note that a CMOS circuit implementation will have short-circuit currents when a gate switches;

however, these currents are transient.)

3. Quasi-delay-insensitive circuits
A circuit is said to be quasi-delay-insensitive if its correct operation is independent of the delays of gates

and wires, except for certain wires that form isochronic forks.

3.1. Isochronic forks and inverters
A fork in a circuit corresponds to an output of a gate being used as the input for more than one gate.
As an example, consider the fork in Fig. 2. The fork connects output z of gate G to the input z1 of gate
G1 and the input 22 of gate G2.
@—>

x1
O
x2
@—-

Fig. 2: An example of a fork.

RVM33 -4

The fork being isochronic means that some transitions on z are not acknowledged by a transition of
both y and z—the outputs of gates G1 and G2 respectively.

For instance, transition T causes transitions £17 and z27. Transition z17 causes (is acknowledged by)
transition yT. But transition 227 does not cause a transition on z. Hence, the completion of transition 227
has to be justified by timing assumptions. We assume that, when transition 217 has been acknowledged by
transition yT, transition z27 is also completed. This assumption is called the “isochronicity assumption.”
[3].

A transition on a variable, say z, can complete in two ways: the voltage of z reaches a value that causes
the gate of which z is an input to switch (i.e. a transition on the output takes place); the voltage of z reaches
a value that prevents the gate of which z is an input from switching.

In both cases, the voltage value for which the transition is considered completed depends on the structure
of the gate—transistor and switching thresholds, in particular. We can abstract from specific physical
dependencies by modelling the time behavior of the transition as a hypothetical “wire delay.” It is this
abstraction that allows us to say that forks are isochronic when the propagation delays on all branches of
the fork are identical—hence the term “isochronic.”

If all forks are isochronic, it is possible to lump the delays of all output branches of a gate into the
delay of the gate and assume that all wires delays are zero. Therefore speed-independence is equivalent to
assuming that all forks are isochronic, and thus fulfilling the isochronicity requirement is the most practical
way of implementing speed-independence.

Fulfilling the isochronicity requirement is considered straightforward, except when there is an explicit
inverter on the branch of the fork whose transition is not acknowledged. This means that there is an
additional delay—namely, the time taken for an inverter to switch—added to the delay of the wire. Since
we have already assumed that gates can take an arbitrary amount of time to switch, this implies that we
can no longer meet the isochronicity requirement without making an additional timing assumption on gate
delays—an assumption that we do not choose to make.

Therefore, the only gates we permit are those that do not need explicit inverters for their implementation.
Such gates are said to be directly implementable. A production-rule representation of a gate Bt — 1 and
B~ — z| corresponds to a directly implementable gate if and only if the negation-normal form of Bt
contains only inverted literals, and the negation normal form of B~ contains only noninverted literals.
This is a consequence of using only P-transistors for pull-up networks and only N-transistors for pull-down
networks.

The introduction of inverters to generate inverted versions of certain variables may result in a circuit
that is no longer QDI! The process of determining where inverters should be placed and adjusting the senses
of various signals to make a production-rule set directly implementable is known as bubble reshuffling. For
instance, an AND gate with inputs ¢ and b, and output ¢ is described by the production rule set

aAb — cT
—aV-b — ¢l
To make this production rule set directly implementable, we can invert the sense of ¢. The negated version
of ¢ is written as c_. We obtain
—aV-b — ¢
aANb — c_|
We can now add an inverter on the output to obtain ¢ from c¢_. This transformation does not affect the QDI
property of the circuit because the rest of the circuit can never examine c_. This observation is general: one
can invert the sense of the output of a gate and add an inverter after it without affecting the QDI property

of the circuit that uses the gate.

RVM33 -5

Suppose, instead, we decided to implement the AND gate by inverting the inputs to obtain
—a-A-b- — ¢
a-Vb_— cl|

If the uninverted senses of a and b are used in other parts of the circuit and the fork between this AND gate
and the rest of the circuit is isochronic, then the introduction of inverters to generate a_ and b_ can result
in a circuit that is no longer QDI.

There are tools that automatically determine where inverters can be placed so that the resulting pro-
duction rule set is directly implementable [8].

3.2. Circuit malfunction

We assume that the only way a QDI circuit can malfunction is if the output of any gate in the circuit
glitches. If all gates are hazard-free, then we consider the circuit to be QDI. (An error in the design of a
circuit may produce a QDI circuit that implements a different specification!)

Definition. (stability) (6)

A production rule G + t is said to be stable in a computation if and only if G can change from true to
false only in those states of the computation in which R(t) holds. A production rule set is said to be stable
if and only if every production rule in the set is stable.

Note that stability is not guaranteed by the implementation of a single gate, but is a property of the entire
computation. Martin’s synthesis method compiles CSP programs into production rules. The synthesis
procedure guarantees that the resulting production rule set is stable and non-interfering.

Theorem. (quasi-delay-insensitivity) (7

A circuit is QDI if and only if the production rule set describing it is stable and non-interfering.

Proof: Suppose the production rule set is unstable. Then, there exists a gate represented by the production
rules Bt — 21 and B~ — z| with an unstable production rule. Without loss of generality, there is a state
in which =z A B holds, which is followed by a state in which =z A =B* holds before z changes. Therefore,
the output of the gate can glitch, which implies that the circuit is not QDI. If the production rule set is
non-interfering, there can be a short-circuit.

Suppose the production rule set is stable and non-interfering. Consider a gate BT +— 21 and B~ ~ z].
From stability, we know that if =2 A Bt holds, then Bt remains true until z changes. In other words, we
cannot have a state in which =2 A—B7T holds before z changes. Similarly, the transition z| is also hazard-free,
implying that the gate is hazard-free. Since every gate is hazard-free, the circuit is QDI. a

4. Confluence, Determinism, and Arbiters
In this section we examine some of the consequences of stability and non-interference, the two properties

that characterize QDI computations. The following definition can be found in [1].

Definition. (strong confluence) (8)

Let t; and t2 be two transitions that can fire in state s. Let s, be the state obtained by firing t; in s,
and s, be the state obtained by firing t, in s. The computation is said to be strongly confluent, if t; can fire
in state sy and ty can fire in state s, and both alternatives lead to the same final state. (cf. Fig. 3)

Theorem. (strong confluence) (9)
A computation can be described by a stable, non-interfering production rule set if and only if it is

strongly confluent.

RVM33 -6

Proof: Let G — t and Gz +— t3 be two production rules that have effective firings in state s, i.e.,
$=> Gy A Go A —R(t1) A =R(t2). Now, #; cannot make G false, since that would make the production rule
unstable. Therefore, after ¢ fires, Gs — t3 can still fire. Similarly, G; — t; can fire after t5 changes as well.
Since all transitions are elementary assignments, the final state does not depend on the order of the two
firings. Therefore, the computation is strongly confluent.

Conversely, suppose a computation is strongly confluent. For each transition ¢, define G(t) as the
disjunction of all the states in which the transition has an effective firing. Then we claim that the production
rule set {G(t) — t | t is a transition} is a stable, non-interfering production rule set that describes the
computation. Let G(t) — ¢t be a production rule that has an effective firing in some state s. Firing any
other production rule cannot disable ¢, since that would violate strong confluence. This implies that the rule
G(t) — t is stable. Since G(t) — t is an arbitrary production rule, the production rule set is stable. The
production rule set is non-interfering since both 27 and x| cannot have an effective firing in a state s, which
implies that G(z1) A G(z]) = false. Finally, the production rule set correctly describes the computation
since, by construction, a transition is enabled in the production rule set if and only if the transition had an
effective firing in the original computation. O

Theorem (9) does not directly rule out self-invalidating production rules. However, these rules can be
systematically eliminated by the introduction of new variables. Let one of Bt +— 21 and B~ — z| be a
self-invalidating rule. We can replace these rules with the following (y is fresh):

Bt =yl y — o
B~ =yl ~y - ol

These rules are no longer self-invalidating since y is a fresh variable. They also do not change the result of
the computation. Therefore, ruling out self-invalidating rules does not restrict the computation in any way.
(The rules y — z1 and -y — x| are implemented with two inverters.)

Consider any strongly confluent computation. Suppose we identify all the effective firings that can
take place at a particular point in the execution and artificially prevent any other production rule from
firing. Then, no matter which path was taken by the computation, the final result would be the same. This
observation holds at any point in the computation. We conclude that a strongly confluent computation is
essentially deterministic. Therefore, a QDI computation will always be deterministic.

®
¢ ela e
™/

®

Fig. 3: Strongly confluent computation.

An arbiter with inputs ai and b7, and outputs « and v is described by the handshaking expansion
*[[at — ul; [—ail; ul
[0t — oT; [—bi]; 0]
11
where the thin bar for the selection denotes arbitration. There is no QDI implementation of this circuit
because a computation that uses an arbiter cannot be strongly confluent. In the state in which ai A b¢ holds,
both uT and v7 can fire. However, after «T fires, T can no longer fire. This implies that when designing an

arbiter, we have to consider the electrical behavior of transistor circuits.

RVM33 -7

5. Compilation of a Turing machine

In this section we demonstrate that QDI circuits can be used to compute any computable function by
constructing a QDI bounded-tape Turing machine. Since any computation can only use a finite amount of
memory (since any physical implementation of a computation can only use finite resources), this demonstrates
that restricting the design space to QDI circuits does not limit the class of functions that can be computed.
The implementation we propose does not include any inverters on a single branch of a fork, and therefore
doesn’t contain inverters on the branch of an isochronic fork. Hence, the implementation is QDI (and
therefore, also speed-independent).

Let TM = (S, K, 6) be a Turing machine with a semi-infinite tape where S and K are positive integers,
and ¢ is a function

6:{q,...,9s} x{00,-.-,0} — {q0,---,9s} x {00,...,0K,L, R}

satisfying 6(q1,0%) = (q1,0%) for all k. Using s to denote the state, array a to denote the tape, and p to
denote the head position, a CSP program that describes such a Turing machine is:

TM = s := qo;p :=0;
*[(s,d) :=6(s, alp]);
[d=L—p:=p—10d=R—p:=p+11 else — alp]:=4d]

The Turing machine is initialized in state zero with its head located at position zero on the tape. It uses
6, commonly referred to as the next move function to determine the action it should take. It then updates
the tape appropriately, and continues the computation. In the rest of this section, we omit the assignments

s := go and p := 0, since they can be performed by appropriately initializing the circuit on reset.

5.1. Process Decomposition

The computation of the Turing machine proceeds in two steps. Using the current value on the tape
and the current value of the state, the next state and action is computed. Following this, the tape is
appropriately updated. We therefore decompose the Turing machine into two parts, one for each distinct
step of the computation. Using variable ¢ to denote the current value of the symbol on the tape, we obtain:

TM1 = *[Tout?c; (s,d):=6(s,c); Tinld]
TM2 = *[Toutlalp]; Tin?d;
[d=L—p=p—10d=R—p:=p+11 else — a[p] :=d]
]
TM = TM1 | TM2

The computation (s, d) := é(s, ¢) reads and writes the same variable s. Since we cannot perform this
operation without making a temporary copy of s, we make this copy explicit by introducing a state buffer.
Using (X?) as an abbreviation for the value received on X, we obtain:
next = *[(s,d) := 6(Sout?, Tout?); Sinls, Tinld]
statebuf = *[Sout!zr; Sin?z]

TM1 = next || statebuf

We do not decompose TM1 furthur, since both next and statebuf can easily be transformed into a circuit

(see below). For the remainder of this section, we concentrate on TM2.

RVM33 -8

A computation resembles a function block when it is of the form “read inputs”, followed by “produce
outputs.” This computation has a standard QDI implementation [4]. We make TM2 resemble this form by
introducing a tape buffer process.

fulltape = x[Tin?d;
[d=L—p:=p—-10d=R—p:=p+11 else — alp]:=d 1; TToutla[p]
]
tapebuf = *[Tout'z; TTout?z]
TM2 = fulltape || tapebuf

On receiving an input on Tin, fulltape updates its current state by either changing the value of p or
changing the value of a[p]. Finally, the value of a[p] is read. Since reading a[p] and modifying p and a[p]
happen in sequence, we can implement this sequencing once and write fulltape as a reactive process. We

split the tape into the tape control, which sequences the read and update operations, and the tape itself.
tapecontrol = x[LTin!(Tin?); TTout!(L?) 1]
tape = *[[LTin — LTin?d; [d=L—p:=p—10d=R—p:=p+1 10 else — a[p] := d]
1L — Lla[p]
11
fulltape = tapecontrol || tape

To implement tape, we consider the tape to be the concurrent composition of a linear array of tape
elements as shown in Fig. 4. Each tape element maintains information about its position relative to the tape
head. Its current state s is [if the element is to the left of the head position, r if the element is to the right
of the head position, and ¢ otherwise. At any point, the tape state (from left to right) can be described by
the regular expression [T#r*, where the length of the expression is the size of the tape. (The presence of a

leading “I” is guaranteed by the program of a Turing machine with a semi-infinite tape.)
LTin RTc?ul
LTout tape RTin rest of tape
L element R
-

Fig. 4: Decomposition of tape into an array of tape elements.

Each tape element contains a register that stores the symbol in the tape element. Apart from this
register, each tape element must maintain its state, s. The operation of a tape element (given its current
state) can be described as follows:

s = 1. If a “move left” action is to be performed, it is communicated to the rest of the tape. The new state
is the state of the first process in the rest of the tape. If a write, read, or a “move right” action is
performed, this action is communicated to the rest of the tape, and the state remains unchanged.

s =r. A “move left”, read, and write action can never happen. If a “move right” action occurs, the new
state is t.

s =1t. A “move left” action results in state r. A “move right” action results in state 1, and this action is
communicated to the rest of the tape so as to move the head to the right. A read/write action is
sent to the register.

Since the next state of a tape element can depend on the state of the first element in the rest of the tape,
we introduce channels RT%n and LTout that communicate this information.

Once again, since the tape reads and modifies its own state, we introduce a buffer to make the copy

explicit. The CSP description of the tape element is:

RVM33 -9

tapeelem = *x[[LTin — LTin?d, STin?s;
[d=L— [s=1— RTout!d; RTin?s; LTout!l
0s =t — LTout't;s:=r
]
0d =R — [s=1— RTout'd; RTin?; LTout!s
s =t — RTout'd; RTin?; LTout!s;s :=1
s =r — LTout!s;s:=t
]
lelse — [s =1 — RTout!'d; RTin?; LTout!s
s =t — GW!d; LTout!s
]
1; STout!s
0L — [s=1— L(R?)
0s =t — LY(GR?)
]
11
tapereg = *[[GR — GR!z
IGW — GW?z
11
tapestate = *[STin'z; STout?z]

tapeelement = tapeelem || tapereg || tapestate

tapestate

STin STout

LTin ———— | ——= RTout
tapeelem R
LTout <=———— &e—— RTin

GR GW

tapereg

Fig. 5: Decomposition of a tape element.

Since we need an additional channel LTout to perform correct state updates, we modify tapecontrol to the
following process:

tapecontrol = [LTin!(Tin?); TTout!(L?), LTout?]

The complete tape element decomposition is shown in Fig. 5.

In the following sections, we compile the Turing machine into production rules. The compilation will pro-
ceed by translating each CSP process into handshaking expansions and, finally, into directly implementable
production rules.

RVM33 -10

5.2. Compilation of TM1

The handshaking expansion for TM1 is straightforward. We use the output on Sin and Tin as the
acknowledge for Sout and Tout, and the input on Sout and Tout as the request for data on Sin and Tin.
We have:
next = *[[v(Sout) A v(Tout)1; Sinfy, Tinfy; [n(Sout) A n(Tout)]; Sinl}, Tinl}]
statebuf = *[Sout := a; [v(Sin)]; a := Sin; Sout); [n(Sin)1]
where the functions v and n encode the validity and neutrality test respectively. We provide the production
rules corresponding to a one-bit version of statebuf. This construction can be easily generalized to n-bits.
statebuf1bit = x[[=Sint A =Sinfl; Lat — SouttT 0 af — Soutf1]1;

[Sint — af |;atT 0 Sinf — atl; af11; Soutt|, Soutf|]

The production rules are:

=Sint A =Sinf A —af — Soutt] at vV Sint — af |
=Sint A =Sinf A —at — Soutf] =Sinf A —af — at]
(Sint A at) V (Sinf A af) — Soutt] af V Sinf — at|
(Sint A at) V (Sinf A af) — Soutf| -Sint A ~at — aof 7

Notice that the compilation of this buffer completes the compilation of tapebuf, and part of tapeelement
as well. The rest of TM 1 can be compiled using the standard function block compilation technique [4], and
depends on the next move function . The block diagram of TM1 is shown in Fig. 6.

statebuf

Sout T Sin
e —
Tout Tin

Fig. 6: Compilation of TM1.

5.3. Compilation of the tape

To simplify the handshaking expansion for the tape, we use the input on LTin as a request for data on
LTout, and the output on LTout as the acknowledge for channel LTin. The protocol used on L is the usual
four-phase handshake.

Compiling tapecontrol. The handshaking expansion for tapecontrol is given by:
*[[v(Tin)]; LTin := Tin; Lv(LTout)]; LTinl}; [n(LTout)];
Lo7; Lv(Li)]; TTout := Li; [n(Tin)1; Lol; [n(Li)]; TToutl}]
We use process factorization to split the handshaking expansion into the following two concurrent processes.
*[[v(Tin)]; LTin := Tin; Lv(LTout)]; LTinl}; [n(LTout)]; LoT; [n(Tin)1; Lo|]
E[[U(Li)]; TTout := Li; [n(Li)]; TTout|]
The second process can be translated into a number of wires. We compile the first process for one-bit data.
This construction can be easily generalized for n-bits of data. We introduce a state variables st and sf to

remove indistinguishable states. (We could have just used one variable, but the resulting production rule

RVM33 -11

set would need a number of extra inverters to make it directly implementable.) The resulting handshaking
expansion is:
*[[Tint — LTintT 0 Tinf — LTinf11; [LToutt Vv LToutf];sf|;stT; LTint], LTinf|;
[-LToutt A ~LToutf]1; LoT; st]; sf1; [Tint A = Tinf]; Lo|]

The production rules corresponding to this handshaking expansion are:

=Tint_A —st AN—=Lo — LTint] LToutt v LToutf +— sf]
=Tinf_N-=st N—Lo — LTinf] = LToutt A ~LToutf A —st — sf7
st — LTint] = LToutt A ~LToutf A =sf — Lol
st — LTinf| Tint_ A Tinf_A sf — Lol

—sf A—Lo +— st
Lo — st]

Notice that we have used the inverted sense of Tin (Tin-) in this production rule set. We have to use an

inverter to generate this signal from T%n.

Compiling a register. Compilation of the register used in tapelement is very simple. We compile a one-bit
dual-railed register; the construction can be easily extended to n-bits. The handshaking expansion for the
register is:
*[[GRi A 1t — GRtol; [-GRi]; GRto]

0GRi A zf — GRfoT; [-GRil; GRfo|

0GWti — zf |; 2tT; GWoT; [GWtil; GWo]

0GWfi — zt];zfT; GWoT; [WGWfA]; GWo|

11

Since the register is accessed in a manner which guarantees mutual exclusion between GR and GW, the

production rules for this process are given by:

—zf AGWSfi — xt? -zt A GRi- — GRfol
zf V GWfi — at] GRi_ — GRfo]

-zt A GWti — zf] (zf N GWf)V (zt A GWti) —» GWo_|
otV GWti — zf | “GWAi AN -GWti — GWo 1

—zf A= GRi- — GRtol
GRi_ — GRto|

The production rule set uses the inverted sense of GRi (GRi_) and generates the inverted sense of GWo

(GWo_). Since GWo_is an output, we can safely invert it to generate GWo.

Compiling the tape element control. The tape element control can send d to the right or to the register,
and conditionally compute the new state. The handshaking expansion for the tape element control can be
written as follows:
tapeeleml = *[[v(LTin) A v(STin)]l; [R — RToutfl-R — skip]l, [W — GWof0-W — skip], I
[((R A v(RTout)) V(W A GWi)V (=R A =W)) A v(I)]; SToutf, LTout;
[n(LTin) A n(STin)]; RToutl}, GWoll, 1|
[n(RTout) A =GWi A n(I)]; SToutl}, LTout|}]

RVM33 -12

read = *[[Li A s =1 — RoT; [v(R%)1; Lofy; [-Lil; Rol; [n(R%)1; Lo}
0Li A s =t — GRoT; [v(GRi)1; Lofy; [-Lil; GRol; [n(GR%)1; Lol
11

We can decompose the tape element control into the read and write part since the environment guarantees
that they do not overlap. We use process factorization on tapeeleml to decompose it into the following two

processes, using channel I to communicate information needed by the other process.

change = *[[v(LTin) A v(STin)]l; [R — RTouttl-R — skipl, [W — GWolt1-W — skip], I;
[n(LTin) A n(STin)1; RToutl}, GWol, I 1]
right = *[[v(I)]; [((R A v(RTout)) vV (W A GWi)) V (=W A =R)1; LToutf, SToutfy;
[n(I) A n(RTout) A ~GWil; LTout\}, STout)]

We use two dual-railed bits (st, sfo) and (st1, sfi) to encode s. The different states are:

(s =1)=sfo A sfi

(s =t)=sfo A sty

(s =1)=stg A sfy
The value received on LTin is encoded using 2+2[log, K + 1] wires. The encoding has the following meaning;:

LTing is true just when d = L.

LTin, is true just when d = R.

LTing..LTin 2[10g, k+17 are used to specify the dual-rail encoding of the symbol to be printed.
The information sent on channel I is used to determine the new state and acknowledge. This channel is
encoded using 13 wires as follows:

Iy..I3 contain the old state, which is used to generate the acknowledge.

I4..I7 contain the new state, if computable without information from RTin.

Ig is true if the new state should be computed from the information received from RTin.

Iy..Io contains the dual-rail encoding of whether or not a communication was initiated on RTout.

L;..L12 contains the dual-rail encoding of whether or not a communication was initiated on GW.
(This encoding is not meant to be efficient in any way!) The predicates R and W are given by:

R=(s=1)V(s=tALTin = R)

W=(LTin#L A LTin#R) A (s = t)

Since both tapeelem1 and right are function blocks, they can be compiled using the standard technique
outlined in [4]. We compile read assuming a one-bit dual-railed input on L; this compilation can be easily
generalized to n-bits, for any n. The handshaking expansion for read is:

x[[Li A sfo A sfi — RoT; [Rti — LtoT0Rfi — Lfo1]; [-Lil; Ro|;
[-Rti A =Rfi]; Lto], Lfo]
0Li A sfy A sti — GRoT; [GRti — Lto10GRfi — Lfo1]; [-Li]; GRol;
[-GRti N ~GRfi1; Lto|, Lfo]
11

The production rules are:

Li A sfo ANsfy — Ro-| -Li — Ro_1
Li A sfg A sty — GRo_| -Li — GRo]
Rti VvV GRti — LtO_l - Rti A —|Rﬁ A =GRt N _|GRﬁ — LtO_T

Rﬁ \% GRﬁ — LfO_l -Rti A —|Rﬁ A =GRt N _|GRﬁ — LfO_T

RVM33 -13

Note that we have generated the inverted signals Lto_, Lfo_, Ro_ and GRo_. Since these are output variables,
and are not used by any operators in this process, we can safely invert them to generate Lto, Lfo, Ro, and
GRo. The entire tapeelement with the state buffer is shown in Fig. 7.

.- _tapeelement __
o ! R
L read 3
! | GR l
3 ! register
LTin | I
mRLE S e se— GW|
change RTout
sTin| | ! |
Tout right |le=e—r—
LRl : 'RTin

LTout | I

5.4. Putting the pieces together
Each component given above is QDI. Some components require the inverted senses of certain signals as
input. As noted in the previous section, the introduction of inverters can compromise the QDI of a circuit.
Observe that the inverted senses of signals are required by tapecontrol and the register. However, the
inputs to these processes are not forked to any other process or operator! As a result, we can safely insert

inverters between the processes to obtain a QDI Turing machine (cf. Fig. 8).

nextstate LTin
Tin _
[S
g LTout tape
(7
Qo
S
TTout L
tapebuf
Tout

Fig. 8: A complete Turing machine.
By the construction given above, we can state that

Theorem. (Turing-completeness) (10)

Any bounded-tape Turing-computable function can be implemented using a QDI circuit.

6. Conclusions

We have shown that quasi-delay-insensitivity, stability and non-interference, and strong confluence are
equivalent properties of a computation. We constructively demonstrated that, despite these restrictions on
QDI computations, any Turing-computable function has a QDI implementation. This construction used only

those gates that have a direct CMOS implementation.

RVM33 -14

References

[1] Leeuwen, J. van. Handbook of Theoretical Computer Science, Volume B: Formal models and semantics.
MIT Press, 1990.

[2] Martin, Alain J. Compiling Communicating Processes into Delay-Insensitive VLSI Circuits. Distributed
Computing 1(4):226-234, 1986.

[3] Martin, Alain J. The Limitations to Delay-Insensitivity in Asynchronous Circuits. Sizth MIT Confer-
ence on Advanced Research in VLSI, 1990.

[4] Martin, Alain J. Asynchronous Datapaths and the Design of an Asynchronous Adder. Formal Methods
in System Design 1(1):119-137, July 1992.

[5] Miller, Raymond E. Sequential Circuits and Machines. John Wiley and Sons, 1965.

[6] Seitz, Charles L. Self-Timed VLSI Systems. Proceedings of the 1st Caltech Conference on Very Large

[7l

(8]

Scale Integration, 1979.

Smith, S.F. and Zwarico, A.E. Correct Compilation of Specifications to Deterministic Asynchronous
Circuits. Formal Methods in System Design 7:155-226, 1995.

Lee, Tak-Kwan. Man page for bubble. Caltech Asynchronous Synthesis Tools, 1993.

