np.random.randn()

诶哟图丢了

randn(d0, d1, …, dn)

从标准正态分布返回一个或多个样本。

如果提供了正的int参数,randn生成一个形状为(d0, d1, …, dn)的数组,其中填充了从均值为0且方差为1的正态分布中采样的随机浮点。如果没有提供参数,则返回一个浮点数。

欲得到均值为μ且方差为σ的正太分布则对返回值ret进行简单变化ret=ret*sigma+mu即可。

# -*- coding: utf-8 -*-
import numpy as np
import PIL.Image as Image
import matplotlib.pyplot as pyp

pyp.figure(figsize=(15, 3), dpi=96)
SHAPE = (28, 28)
ROW, COL, index = 1, 4, 0
POINT_SIZE, FONT_SIZE = 5, 10
img 
### `np.random.randn` 的默认参数解释 `np.random.randn` 是 NumPy 中用于生成服从标准正态分布(均值为 0,标准差为 1)的随机数的函数。如果未提供任何参数,则会返回一个从该分布中抽取的浮点数[^3]。 #### 默认行为 当不传递任何参数时,`np.random.randn()` 返回单个浮点数值,该数值来自标准正态分布。例如: ```python import numpy as np # 默认情况下生成一个标准正态分布的随机数 random_num = np.random.randn() print(random_num) ``` 输出结果类似于: ``` -1.2255531526822836 ``` 此数值理论上可以取负无穷到正无穷之间的任意实数,但实际上大多数样本会集中在 0 附近[^3]。 #### 参数说明 `np.random.randn` 支持一组可选的整数参数 `d0, d1, ..., dn`,它们用于指定输出数组的维度。每个参数代表一个轴的长度,且必须是非负整数。如果没有任何参数传入,则默认生成一个标量(即单个浮点数)[^4]。 例如,以下代码生成一个形状为 (2, 3) 的二维数组,其中每个元素都是标准正态分布的随机数: ```python # 生成一个2x3的矩阵,其中每个元素都是标准正态分布的随机数 random_matrix = np.random.randn(2, 3) print(random_matrix) ``` 输出可能如下所示: ``` [[ 0.0192291 -0.40467306 0.68757845] [ 0.70956837 0.00599631 -0.99822342]] ``` 上述行为表明,`np.random.randn` 在无参数时返回单一浮点数,在有参数时返回相应形状的多维数组[^4]。 --- ### 与其他随机数生成函数的区别 与 `np.random.random` 不同的是,`np.random.randn` 生成的是标准正态分布的数据,而 `np.random.random` 生成的是在区间 `[0.0, 1.0)` 内的均匀分布随机数。因此,两者适用于不同场景:前者适合模拟自然现象中的波动,后者适合生成归一化数据。 此外,`np.random.normal` 是更通用的正态分布生成函数,允许用户自定义均值和标准差。`np.random.randn` 可以看作是 `np.random.normal(loc=0, scale=1)` 的特例[^1]。 --- ### 示例总结 以下是一些常见的使用示例,展示了 `np.random.randn` 的默认与带参调用方式: ```python # 默认情况:生成一个随机浮点数 print(np.random.randn()) # 输出类似 -1.2255531526822836 # 生成一个包含5个随机数的一维数组 print(np.random.randn(5)) # 输出类似 [ 0.49489432 -0.95505266 -0.34218517 0.05715235 -0.06584269] # 生成一个2x3的二维数组 print(np.random.randn(2, 3)) # 输出类似 [[ 0.0192291 -0.40467306 0.68757845] # [ 0.70956837 0.00599631 -0.99822342]] ``` 这些示例进一步验证了其默认参数的行为和灵活性[^3]。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值