Artificial Intelligence
Category: Intermediate (200)
How INRIX accelerates transportation planning with Amazon Bedrock
INRIX pioneered the use of GPS data from connected vehicles for transportation intelligence. In this post, we partnered with Amazon Web Services (AWS) customer INRIX to demonstrate how Amazon Bedrock can be used to determine the best countermeasures for specific city locations using rich transportation data and how such countermeasures can be automatically visualized in street view images. This approach allows for significant planning acceleration compared to traditional approaches using conceptual drawings.
Agents as escalators: Real-time AI video monitoring with Amazon Bedrock Agents and video streams
In this post, we show how to build a fully deployable solution that processes video streams using OpenCV, Amazon Bedrock for contextual scene understanding and automated responses through Amazon Bedrock Agents. This solution extends the capabilities demonstrated in Automate chatbot for document and data retrieval using Amazon Bedrock Agents and Knowledge Bases, which discussed using Amazon Bedrock Agents for document and data retrieval. In this post, we apply Amazon Bedrock Agents to real-time video analysis and event monitoring.
Optimize RAG in production environments using Amazon SageMaker JumpStart and Amazon OpenSearch Service
In this post, we show how to use Amazon OpenSearch Service as a vector store to build an efficient RAG application.
Advancing AI agent governance with Boomi and AWS: A unified approach to observability and compliance
In this post, we share how Boomi partnered with AWS to help enterprises accelerate and scale AI adoption with confidence using Agent Control Tower.
Use Amazon SageMaker Unified Studio to build complex AI workflows using Amazon Bedrock Flows
In this post, we demonstrate how you can use SageMaker Unified Studio to create complex AI workflows using Amazon Bedrock Flows.
Revolutionizing drug data analysis using Amazon Bedrock multimodal RAG capabilities
In this post, we explore how Amazon Bedrock’s multimodal RAG capabilities revolutionize drug data analysis by efficiently processing complex medical documentation containing text, images, graphs, and tables.
Context extraction from image files in Amazon Q Business using LLMs
In this post, we look at a step-by-step implementation for using the custom document enrichment (CDE) feature within an Amazon Q Business application to process standalone image files. We walk you through an AWS Lambda function configured within CDE to process various image file types, and showcase an example scenario of how this integration enhances Amazon Q Business’s ability to provide comprehensive insights.
Structured data response with Amazon Bedrock: Prompt Engineering and Tool Use
We demonstrate two methods for generating structured responses with Amazon Bedrock: Prompt Engineering and Tool Use with the Converse API. Prompt Engineering is flexible, works with Bedrock models (including those without Tool Use support), and handles various schema types (e.g., Open API schemas), making it a great starting point. Tool Use offers greater reliability, consistent results, seamless API integration, and runtime validation of JSON schema for enhanced control.
Using Amazon SageMaker AI Random Cut Forest for NASA’s Blue Origin spacecraft sensor data
In this post, we demonstrate how to use SageMaker AI to apply the Random Cut Forest (RCF) algorithm to detect anomalies in spacecraft position, velocity, and quaternion orientation data from NASA and Blue Origin’s demonstration of lunar Deorbit, Descent, and Landing Sensors (BODDL-TP).
Build an intelligent multi-agent business expert using Amazon Bedrock
In this post, we demonstrate how to build a multi-agent system using multi-agent collaboration in Amazon Bedrock Agents to solve complex business questions in the biopharmaceutical industry. We show how specialized agents in research and development (R&D), legal, and finance domains can work together to provide comprehensive business insights by analyzing data from multiple sources.