CopyOnWriteArrayList引发OOM

服务突然在23号出现异常,响应时间最长达到60几秒,原因是使用了不适合频繁读写操作的CopyOnWriteArrayList数据结构,导致Apache与Jboss之间大量连接超时并引发内存溢出。

正常一年多的一个服务突然在23号出现异常,响应最快的竟然达到60几秒。apache与jboss之间大量连接超时。

看异常日志,发现竟然有一个新上的Servlet出现OOM。

review该Servlet,发现竟然用了一个CopyOnWriteArrayList来存放大量写和读和临时数据,该数据结构只适合偶尔写大量读的情况,

否则会造成不停地COPY空间,从而导致OOM

 

 

<think>好的,我现在需要解决用户关于在多线程处理中如何高效汇总Callable返回的List的问题。用户想知道是使用锁来汇总每个线程返回的List,还是在Future中汇总更高效,或者是否有更优的方案。 首先,我需要回顾一下两种方法的基本原理。使用锁的话,每个线程在完成任务后,需要获取锁,然后将自己的结果添加到共享的List中。这种方法可能会因为锁的竞争导致性能下降,尤其是在线程数较多的情况下。例如,如果有多个线程同时尝试获取锁,就会发生阻塞,增加等待时间。 另一种方法是在Future中汇总。即每个线程独立处理任务,返回自己的List,然后主线程通过Future.get()逐个获取这些List,最后合并。这种方法避免了锁的竞争,因为每个线程的结果是独立的,合并过程在单线程中进行。但合并的时间可能随着线程数的增加而变长,尤其是当每个Future的结果很大时,合并操作本身可能成为瓶颈。 接下来,我需要比较这两种方法的效率。锁的竞争问题在并发编程中是一个常见问题,特别是在高并发场景下,锁可能导致线程频繁切换和等待,从而降低整体吞吐量。而Future的方式虽然避免了锁,但需要在主线程中串行合并结果,如果结果集很大,合并的时间可能较长。不过,合并操作可以利用多线程并行处理吗?比如,如果主线程在获取所有Future之后,使用并行流或者其他方式合并,可能会提高效率。但需要考虑合并操作本身的复杂度。 然后,是否有更优的解决方案呢?用户可能想知道有没有既能避免锁竞争,又能高效合并的方法。这里可能涉及到并发集合的使用,比如使用线程安全的集合类,如CopyOnWriteArrayList,不过这个类在写入时复制,适合读多写少的场景,对于频繁的写入可能效率不高。或者使用Java 8中的并行流和分而治之的方法,将任务分解,每个线程处理一部分数据,最后合并结果。例如,使用Fork/Join框架,将大任务拆分成小任务,并行处理后再合并,这样可以减少锁的使用,同时利用多核处理器的优势。 另外,还可以考虑使用CompletionService来管理Future,这样可以在任务完成时立即处理结果,而不需要等待所有任务提交完毕。例如,主线程可以轮询CompletionService,一旦有任务完成就立即合并结果,这样合并操作可以分散进行,减少最终合并的时间。这种方法可能比等待所有Future完成后再合并更高效,尤其是在任务执行时间不均衡的情况下。 还需要考虑数据结构和算法的影响。例如,如果每个线程返回的List很大,合并时使用addAll方法可能会有性能问题,可以考虑使用更高效的数据结构,如链表或者预分配大小的ArrayList,以减少扩容带来的开销。或者,如果结果允许,可以使用合并操作而不是逐个添加,比如使用流式处理或者批处理。 最后,需要根据具体应用场景来决定。如果任务执行时间差异较大,使用CompletionService可能更优;如果任务执行时间均匀,且结果集较小,Future逐个合并可能足够。而如果结果集很大,且需要高效合并,可能需要结合并行合并和合适的数据结构。 总结起来,可能的方案包括: 1. 使用锁合并:简单但可能有竞争。 2. Future逐个合并:无竞争但可能串行瓶颈。 3. 并发集合:如ConcurrentLinkedQueue,适合高并发写入。 4. Fork/Join框架:分而治之,并行处理。 5. CompletionService:及时处理完成的任务。 6. 并行流合并:利用多线程加速合并。 需要进一步分析每种方案的适用场景和性能特点,给出用户最佳实践建议。</think>在Java多线程处理中,当`Callable`任务返回一个`List`时,如何高效汇总结果取决于具体场景和实现方式。以下是两种常见方法的对比及更优的解决方案: --- ### **1. 方法对比** #### **方案A:使用锁同步汇总** - **实现方式**:所有线程共享一个`List`,通过锁(如`synchronized`或`ReentrantLock`)保证线程安全。 - **优点**:实现简单,适合小规模数据。 - **缺点**: - **锁竞争**:高并发下线程频繁阻塞,吞吐量下降。 - **扩展性差**:线程数越多,性能损失越明显。 ```java List<Integer> sharedList = Collections.synchronizedList(new ArrayList<>()); executor.submit(() -> { List<Integer> partialResult = computePartialResult(); synchronized (sharedList) { sharedList.addAll(partialResult); } return null; }); ``` #### **方案B:通过Future汇总** - **实现方式**:每个线程独立返回`List`,主线程通过`Future.get()`收集所有结果后合并。 - **优点**:无锁竞争,线程完全并行。 - **缺点**: - **合并延迟**:主线程需等待所有任务完成后再合并,可能成为瓶颈。 - **内存压力**:所有子列表同时驻留内存,数据量大时可能引发OOM。 ```java List<Future<List<Integer>>> futures = new ArrayList<>(); for (int i = 0; i < tasks; i++) { futures.add(executor.submit(new CallableTask())); } List<Integer> finalResult = new ArrayList<>(); for (Future<List<Integer>> future : futures) { finalResult.addAll(future.get()); // 串行合并 } ``` --- ### **2. 更优的解决方案** #### **方案C:并发集合(无锁结构)** - **实现方式**:使用线程安全的并发集合(如`ConcurrentLinkedQueue`或`CopyOnWriteArrayList`)直接汇总。 - **优点**:无显式锁,并发写入性能更高。 - **缺点**: - **最终一致性**:部分集合(如`ConcurrentLinkedQueue`)可能无法保证遍历时的实时一致性。 - **写入开销**:如`CopyOnWriteArrayList`每次写入会复制底层数组,适合低频写入场景。 ```java ConcurrentLinkedQueue<Integer> resultQueue = new ConcurrentLinkedQueue<>(); executor.submit(() -> { List<Integer> partialResult = computePartialResult(); resultQueue.addAll(partialResult); // 无锁添加 return null; }); ``` #### **方案D:分而治之(Fork/Join框架)** - **实现方式**:将大任务拆分为子任务,并行处理后合并(类似MapReduce)。 - **优点**: - **并行合并**:子任务的结果可并行合并,充分利用多核。 - **负载均衡**:自动处理任务拆分和线程调度。 - **缺点**:实现复杂度较高。 ```java public class MergeTask extends RecursiveTask<List<Integer>> { @Override protected List<Integer> compute() { // 拆分任务,并行处理,合并结果 } } ForkJoinPool pool = new ForkJoinPool(); List<Integer> finalResult = pool.invoke(new MergeTask()); ``` #### **方案E:流式处理(Java 8+)** - **实现方式**:利用`parallelStream()`并行处理数据,自动合并结果。 - **优点**:代码简洁,无需手动管理线程。 - **缺点**:对数据源有要求(需支持分割)。 ```java List<Integer> inputData = Arrays.asList(1, 2, 3, 4, 5); List<Integer> finalResult = inputData.parallelStream() .map(this::processItem) .collect(Collectors.toList()); ``` #### **方案F:异步回调(CompletableFuture)** - **实现方式**:通过`CompletableFuture`链式操作,任务完成后立即合并。 - **优点**: - **非阻塞合并**:无需等待所有任务完成。 - **灵活组合**:支持依赖任务、超时等复杂逻辑。 - **缺点**:回调嵌套可能降低可读性。 ```java List<CompletableFuture<List<Integer>>> futures = new ArrayList<>(); for (int i = 0; i < tasks; i++) { futures.add(CompletableFuture.supplyAsync(() -> computePartialResult(), executor)); } CompletableFuture<Void> allFutures = CompletableFuture.allOf(futures.toArray(new CompletableFuture[0])); CompletableFuture<List<Integer>> finalResult = allFutures.thenApply(v -> futures.stream() .map(CompletableFuture::join) .flatMap(List::stream) .collect(Collectors.toList()) ); ``` --- ### **3. 性能对比总结** | **方案** | **适用场景** | **吞吐量** | **内存占用** | **实现复杂度** | |----------------|--------------------------------|----------|------------|------------| | 锁同步 | 小规模数据,低并发 | 低 | 低 | 低 | | Future串行合并 | 任务执行时间均匀,结果集较小 | 中 | 中 | 低 | | 并发集合 | 高频写入,允许最终一致性 | 高 | 低 | 中 | | Fork/Join | 大规模数据,需并行合并 | 高 | 中 | 高 | | 并行流 | 数据源可分割,代码简洁 | 高 | 低 | 低 | | CompletableFuture | 需要非阻塞、灵活的任务组合 | 高 | 中 | 中 | --- ### **4. 最佳实践建议** 1. **数据量小且低并发**:直接使用`Future`串行合并(方案B)。 2. **高频写入且允许最终一致性**:使用`ConcurrentLinkedQueue`(方案C)。 3. **大规模数据需并行合并**:选择`Fork/Join`框架(方案D)或`parallelStream`(方案E)。 4. **需要异步回调和非阻塞处理**:使用`CompletableFuture`(方案F)。 **关键原则**: - **减少锁竞争**:优先选择无锁或细粒度锁方案。 - **分散合并压力**:避免在单一节点集中合并(如主线程串行合并)。 - **合理控制内存**:避免同时驻留大量子列表导致OOM
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值