活动地址:CSDN21天学习挑战赛
深度学习的数学基础:
线性代数: 告诉我们神经网路的数据是张量
概率论与信息论:这有什么疑问的,有什么机器学习算法用不到概率论
数值计算:告诉我们怎么算
还有微积分,毕竟梯度什么的都是微积分的内容啊
神经网络主要构成
输入
隐层:就是靠这个学习的
输出
深度学习的4种典型算法:
- 卷积神经网络 – CNN 用来处理具有类似网络结构的数据,如时间序列、图像数据;通过卷积来替代一般的矩阵乘法运算看的第一周那3个案例day1, day3, day5都是这个网络.
一个简单的CNN网络总共分这几布,参考官网:如何训练一个简单的卷积神经网络 (CNN) 来对 CIFAR 图像进行分类- 载入数据,或是下载或是本地
- 验证数据,验证数据集看起来是否正确,就是输出几张训练集中的图片,查看是否正常
- 构造卷积神经网络模型: Conv2D 层 + MaxPooling2D 层 + Dense 层
- 编译并训练模型:开始N等待,比如简单的10层。
- 评估模型:你会发现test_acc与最后一次训练结果一致,难道是训练结果越来越好?
- 循环神经网络 – RNN
下面这两个,等学明白上面那两个再说吧
- 生成对抗网络 – GANs
- 深度强化学习 – RL
神经网路的优势与不足:
优点
- 具有非线性映射能力。PS:号称是可以逼近任意复杂的非线性关系
- 具有自学习和自适应能力。PS: 都是深度学习了,这不是基本操作么???
- 具有泛化能力。PS: 你不知道的,他都知道
百度百科:泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。学习的目的是学到隐含在数据背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出,该能力称为泛化能力。
- 具有容错能力。PS: 鲁棒性是真的强,稳得很!!!
不足 - 数据量需求大。PS: 毕竟是大数据时代兴起的东西
- 可解释性差。PS: 黑箱性质,你永远不知道箱子的那头是什么。
- 计算代价高。PS: 深度学习是真的贵,大数据需要大存储,money! GPU提供算力,还是money。总之,没money,能玩,也就玩玩而已。