LSTM已死,Transformer当立(LSTM is dead. Long Live Transformers! ):上

本文介绍了如何仅使用Attention和Self-Attention构建Seq2seq模型,详细阐述了从Single-head到Multi-head Attention的过程,揭示了Transformer在NLP领域的并行计算优势,探讨了其替代RNN的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回想一下在Seq2seq模型中,如何使用Attention。这里简要回顾一下【1】介绍的方法2(并以此为基础展开对Transformer的讨论)。

下图中包含一个encoder(左)和一个decoder(右)。对于decoder来说,给定一个输入\mathbf{x}'_j,得到输出\mathbf{s}_j,如何进一步得到context vector \mathbf{c}_j呢?

我们需要根据\mathbf{h}_i\mathbf{c}_j的相关性来计算权重

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值