时间序列分析之AR、MA、ARMA、ARIMA详解(2)

大千世界中存在着大量与时间序列(time series)有关的数据,例如股票价值的波动、GDP的历史数据等等。时间序列分析是计量经济学、统计学、机器学习、数据挖掘的等数据科学领域的重要研究方向。时间序列模型是一种关于时间的随机过程(stochastic process)模型。因为模型中考虑的是序列的历史,在此类模型中,我们认为如果能够了解时间序列的随机结构,就可以对该时间序列的未来值进行预测。这是本系列文章的第2篇。之前,已经讨论过平稳时间序列的定义和性质,还介绍了最简单的时间序列分析模型——AR模型。其实,本博客之前还介绍过格兰杰因果关系检验,这其实也是一种对时间序列进行分析的方法。但前面这些时间序列模型都对数据的平稳性有要求,因此本文将主要讨论平稳性检验方面的一些技术。

 

注意,学习本系列文章前,你必须确保自己对普通线性回归(含多元线性回归)都有比较深入的了解。对此,你可以参考我的其它著作,例如《机器学习原理与实践(Python版)》或者《统计学习理论与方法(R语言版)》等。


一、DF检验

单位根检验(Unit Root Test)是检

### ARIMA模型工作原理详解 ARIMA(AutoRegressive Integrated Moving Average)模型是一种用于分析和预测时间序列数据的强大工具。它由三个主要组成部分构成:自回归(AR)、差分(I)以及移动平均(MA),这些部分共同作用来处理非平稳的时间序列。 #### 自回归(AR) 自回归是指当前观测值可以表示为其过去若干期的线性组合加上随机误差项的形式。具体来说,AR(p)模型意味着当前值依赖于其前 p 个时期的值,并通过计算滞后变量之间的关系来进行建模[^1]。然而需要注意的是,应用自回归的前提条件包括时间序列需具备平稳性和一定的相关性;当自相关系数小于0.5时,通常不建议使用该方法[^4]。 #### 差分(I) 为了使原本可能存在的趋势或者季节性的波动被消除从而达到稳定状态的目的,“积分”操作实际上指的是对原始序列执行一次或多次差分运算直到获得一个稳定的版本为止。这个过程被称为单位根检验后的阶数d的选择,在实际操作过程中非常重要因为只有实现了真正的稳定性才能继续下一步骤中的参数估计等活动[^2]。 #### 移动平均(MA) 另一方面,移动平均则关注如何利用过去的预报误差来改进未来的预测效果。在一个简单的 MA(q) 过程里边儿呢,我们假设每一个新的观察都可以看作是由白噪声序列叠加而成的结果再加上之前 q 步内的残差影响所形成的新数值集合起来考虑得到最终表达形式[^3]。 综合以上三个方面来看待整个体系结构的话就会发现其实质上就是把复杂的现实世界现象简化成几个易于理解和管理的小模块而已啦! ```python import pandas as pd from statsmodels.tsa.arima.model import ARIMA # Sample data loading (replace with your actual dataset) data = pd.read_csv('time_series_data.csv') series = data['value'] # Fit an ARIMA model to the series, example parameters are used here. model = ARIMA(series, order=(5,1,0)) results = model.fit() print(results.summary()) ``` 上述代码片段展示了如何基于Python中的`statsmodels`库实现并拟合一个具体的ARIMA模型实例给定一组时间序列数据集之后再调用相应的方法完成训练流程最后输出结果摘要信息供进一步分析解读之用。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值