大千世界中存在着大量与时间序列(time series)有关的数据,例如股票价值的波动、GDP的历史数据等等。时间序列分析是计量经济学、统计学、机器学习、数据挖掘的等数据科学领域的重要研究方向。时间序列模型是一种关于时间的随机过程(stochastic process)模型。因为模型中考虑的是序列的历史,在此类模型中,我们认为如果能够了解时间序列的随机结构,就可以对该时间序列的未来值进行预测。这是本系列文章的第2篇。之前,已经讨论过平稳时间序列的定义和性质,还介绍了最简单的时间序列分析模型——AR模型。其实,本博客之前还介绍过格兰杰因果关系检验,这其实也是一种对时间序列进行分析的方法。但前面这些时间序列模型都对数据的平稳性有要求,因此本文将主要讨论平稳性检验方面的一些技术。
注意,学习本系列文章前,你必须确保自己对普通线性回归(含多元线性回归)都有比较深入的了解。对此,你可以参考我的其它著作,例如《机器学习原理与实践(Python版)》或者《统计学习理论与方法(R语言版)》等。
一、DF检验
单位根检验(Unit Root Test)是检