常数和基本初等函数导数公式:
1.c′=0
2.(xn)′=nxn−1
(1).(x√)′=12x√
(2).(1x)′=−1x2
3.(sinx)′=cosx
4.(cosx)′=−sinx
5.(lnx)′=1x
6.(logax)′=logaex
7.(ax)′=axlna
(1). (ex)′=ex
8.(tanx)′=sec2x
9.(cotx)′=−csc2x
10.(secx)′=secxtanx
11.(cscx)′=−cscxcotx
12.(arcsinx)′=11−x2√
13.(arccosx)′=−11−x2√
14.(arctanx)′=11+x2
15.(arccotx)′=−11+x2
下面对导数公式进行推导:
(xn)′=nxn−1
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(xn)′=limΔx→0(x+Δx)00n−xnΔx
=limΔx→0∑nm=1CmnxmΔxn−m−xnΔx
=limΔx→0C0nx0Δxn+C1nx1Δxn−1+……+Cn−1nxn−1Δx1+CnnxnΔx0−xnΔx
=limΔx→0C0nx0Δxn+C1nx1Δxn−1+……+Cn−1nxn−1Δx1Δx
=nxn−1
(sinx)′=cosx
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(sinx)′=limΔx→0sin(x+Δx)−sinxΔx
=limΔx→02cosx+Δx+x2sinx+Δx−x2Δx
=limΔx→02cos(x+Δx2)sinΔx22Δx2
=limΔx→0cos(x+Δx2)
=cosx
(cosx)′=−sinx
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(cosx)′=limΔx→0cos(x+Δx)−cosxΔx
=limΔx→0−2sinx+Δx+x2sinx+Δx−x2Δx
=limΔx→0−2sin(x+Δx2)sinΔx22Δx2
=limΔx→0−sin(x+Δx2)
=−sinx
(lnx)′=1x
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(lnx)′=limΔx→0ln(x+Δx)−lnxΔx
=limΔx→0ln(x+Δxx)Δx
=limΔx→0ln(1+Δxx)Δxxx
=1x
(logax)′=logaex
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(logax)′=limΔx→0loga(x+Δx)−logaxΔx
=limΔx→0loga(1+Δxx)Δx
=limΔx→0loga(1+1xΔx)xΔxΔxxΔx
=limΔx→0logaeΔxxΔx
=limΔx→0ΔxxlogaeΔx
=logaex
(ax)′=axlna
由导数的定义:
limΔx→0f(x+Δx)−f(x)Δx
得:
(ax)′=limΔx→0ax+Δx−axΔx
=limΔx→0ax(aΔx−1)Δx
=axlimΔx→0ΔxlnaΔx
=axlna
(tanx)′=sec2x
(tanx)′=(sinxcosx)′
=(sinx)′cosx−sinx(cosx)′cos2x
=cos2x+sin2xcos2x
=sec2x
(cotx)′=−csc2x
(cotx)′=(1tanx)′
=(cosxsinx)′
=(cosx)′sinx−cosx(sinx)′sin2x
=−csc2x
(secx)′=secxtanx
(secx)′=(1cosx)′
=1′cosx−1(cosx)′cos2x
=sinxcos2x
=secxtanx
(cscx)′=−cscxcotx
(cscx)′=(1sinx)′
=1′sinx−1(sinx)′sin2x
=−cosxsin2x
=−cscxcotx
(arcsinx)′=11−x2√
设y=arcsinx,则x=siny
(arcsinx)′=(1siny)′
=1cosy
=11−sin2y−−−−−−−−√
=11−x2−−−−−√
(arccosx)′=−11−x2√
设y=arccosx,则x=cosy
(arccosx)′=(1cosy)′
=−1siny
=−11−cos2y−−−−−−−−√
=−11−x2−−−−−√
(arctanx)′=11+x2
设y=arctanx,则x=tany
(arctanx)′=(1tany)′
=1sec2y
=11+tan2y
=11+x2
(arccotx)′=−11+x2
设y=arccotx,则x=coty
(arccotx)′=(1coty)′
=−1csc2y
=−11+cot2y
=−11+x2