连续型随机变量函数的分布

本文详细介绍了如何通过已知随机变量的分布函数或概率密度函数,来求解由该随机变量构成的函数的分布函数及概率密度函数。特别讨论了连续型随机变量函数的分布求解方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设已知XXX的分布函数FX(x)F_X(x)FX(x)或概率密度函数fX(x)f_X(x)fX(x),则随机变量函数Y=g(X)Y=g(X)Y=g(X)的分布函数可按如下方法求得:FY(y)=P{Y⩽y}=P{g(X)⩽y}=P{X⩽h(y)}=FX(h(y))\begin{aligned} F_Y(y) & =P\{Y \leqslant y\} \\ & = P\{g(X)\leqslant y\} \\ & = P\{X \leqslant h(y)\} \\ & = F_X(h(y)) \\ \end{aligned}FY(y)=P{Yy}=P{g(X)y}=P{Xh(y)}=FX(h(y))

公式法求连续型随机变量函数的分布
设连续型随机变量XXX的密度函数为fX(x)f_X(x)fX(x),若y=g(x)y=g(x)y=g(x)是处处可导且恒有g′(x)&gt;0g&#x27;(x) &gt; 0g(x)>0g′(x)&lt;0g&#x27;(x) &lt; 0g(x)<0的函数(即g(x)g(x)g(x)单调),其反函数为x=h(y)x=h(y)x=h(y),则Y=g(X)Y=g(X)Y=g(X)的概率密度函数为fY(y)=FX′(h(y))={fX(h(y))h′(y),α&lt;y&lt;β0,otherwisef_Y(y) =F_X&#x27;(h(y))= \begin{cases} f_X(h(y))h&#x27;(y), &amp; \alpha &lt; y &lt; \beta \\ 0, &amp; otherwise \end{cases}fY(y)=FX(h(y))={fX(h(y))h(y),0,α<y<βotherwise
其中α=min⁡{g(−∞),g(∞)}\alpha = \min\{g(-\infty), g(\infty)\}α=min{g(),g()}β=max⁡{g(−∞),g(∞)}\beta = \max\{g(-\infty), g(\infty)\}β=max{g(),g()}

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白水baishui

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值