Retinanet网络结构详解

本文深入探讨RetinaNet网络结构,对比FPN的差异,详述其性能优势,特别是在目标检测的one-stage方法中实现的突破。此外,文章还介绍了RetinaNet的损失函数设计,包括正负样本匹配策略和Focal Loss的使用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 概述

Retinanet的论文:Focal Loss for Dense Object Detection
在这里插入图片描述
论文2017年发表在CVPR(computer vision and pattern recongnition) ,该论文提出来后 one-stage网络首次超过two-stage网络

One-stage和two-stage网络的区别

  • two-stage : 以Faster RCNN为主的two-stage网络,首先需要通过一个RPN网络去生成我们的Proposal, 然后通过Fast RCNN对我们的目标进行最终的预测,它是分两步的。
  • one-stage:以SSD、YOLO系列为主的,它是一步直接预测出我们最终的结果,但是在这篇
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值