Pytorch量化感知训练

本文介绍了PyTorch的量化感知训练(Quantization Aware Training, QAT),旨在提高模型对量化效应的适应能力,以获取更高精度的量化模型。通过在模型中插入伪量化节点,模拟量化过程,并在训练后实施量化。QAT包括修改模型、算子折叠、指定量化方案等步骤,以减少量化带来的性能损失。最后,通过convert_to_quantized_model()将模型转化为真正量化模型。" 138290266,17419161,深度解析:循环神经网络与LSTM、GRU及其应用,"['自然语言处理', '深度学习', '神经网络']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参考博客:Pytorch量化感知训练

  • 量化感知训练(Quantization Aware Training)是在模型中插入伪量化模块(fake_quant module)模拟量化模型在推理过程中进行的舍入(rounding)和钳位(clamping)操作,从而在训练过程中提高模型对量化效应的适应能力,获得更高的量化模型精度 。

  • 在这个过程中,所有计算(包括模型正反向传播计算和伪量化节点计算)都是以浮点计算实现的,在训练完成后才量化为真正的int8模型。

  • Pytorch官方从1.3版本开始提供量化感知训练API,只需修改少量代码即可实现量化感知训练。

Step1:修改模型

  • 在模型输入前加入QuantStub(),在模型输出后加入DeQuantStub()。目的是将输入从float32量化为int8,将输出从int8反量化为float32。
##############################
# Part1:插入节点
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值