图像分割 FCN(1):FCN网络讲解

FCN是2015年提出的语义分割经典网络,提升了Mean IOU 30%。其特点包括全连接层转卷积层,允许输入尺寸变化。网络结构包含FCN-32s、FCN-16s和FCN-8s,分别通过不同倍数上采样恢复原图大小。损失计算采用像素级交叉熵损失,评价指标涉及Mean IOU。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 介绍

FCN网络论文:Fully Convolution Networks for Semantic Segmentation,是2015年发表在CVPR上的一篇文章。FCN网络是首个端对端的针对像素级预测的全卷积网络
在这里插入图片描述

  • FCN网络是语义分割领域非常经典的网络,它的地位可以类比于目标检测领域的Faster-RCNN, 因为从2015年之后在语义分割领域中很多论文基本上都是站在FCN肩膀之上做的研究。FCN的网络结构非常简单,但它确非常的有效。
  • FCN网络有3中不同的类型,分别为FCN-32s,FCN-16s,FCN-8s,上图可以看出FCN-8s语义分割的效果和人工标注的效果已经非常接近了。

1.1 网络性能

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@BangBang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值