算法导论2 动态规划 最优二叉查找树

本文探讨如何构建一棵二叉查找树,使得在给定的有序关键字序列中,考虑到每个关键字被查找的概率,以及搜索字可能不在序列中的概率分布,能够最小化整棵树的访问数。通过自顶向下递归和自底向上动态规划的方法,提出了计算最优二叉查找树的公式,并给出了相应的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 问题
    1. K(1...n) 为有序关键字序列(值有序非概率有序),对于任何一个位置 关键字查找的概率为Pi, 某些搜索字不存在于这些关键字之中,Qj为位于位置 j 与 j+1 之间的概率(搜索字未找到且大于位置为 j 的关键字) ;Q0为小于第一个关键字的概率,求如何组织一棵二叉查找树,使得整颗树访问数最小?
  2. 自顶向下的递归方法
    1. 设 f(i,j) 为 K(i...j)关键字i 到 j 的最优二叉查找树;w(i,j)为关键字i到j组成树的所有结点概率总和(不考虑深度);对于(i,j)之间任何一个位置为k(为根结点)的关键字,则得到公式:
      1. f(i,j) = min( f(i,k-1) + w(i,k-1) 「由于左子树所有结点的深度都是加了1」 + f(k+1,j) + w(k+1,j) + w(k)) = min( f(i,k-1) + f(k+1,j) +w(i,j))
      2. w(i,j) = sum(Pi + ... + Pj) + sum(Qi-1 + Qi + ...+ Qj) = w(i,k-1) + Pk + w(k+1,j)
  3. 自底向上的动态规划
    1. 存储f(i,j),w(i,j)
      1. 根据公式1,对于第一个关键字f(1,1) = f(1,0) + f(2,1) + w(1,1); 因为k只能等于1;
      2. 根据公式2,   对于第一个关键字w(1,1) = w(1,0) + P1 + w(2,1); 也是因为k只能等于1
      3. 所以f(1,0) = Q0 , f(2,1) = Q1; W(1,0) = Q0 ; w(2,1) = Q1; 从位置1到位置0 并没有任何实际的意义;这里纯粹为了好循环计算。同理从位置2到位置1也没有实际的意义。也可以认为关键字2到关键字1只有搜索不到且大于关键字1的概率Q1
  4. 代码
    1. src/samples/algorith/C155OptimalBST.ts · Bob/LayaAir - Gitee.com
  5. 运行结果

     

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值