【漫谈机器学习】1.误差做小VS概率概率最大(3)

遇到新问题

到目前为止,至少有几个问题需要解决:

  • 如果解析解求不出来怎么办?答案是:迭代搜索求解(最优化问题)

  • 如果样本数量特别大,怎么处理?答案是:递推求解(在线学习优化问题)

  • 如果误差不是正态分布该怎么办呢?答案是:广义线性回归

  • 如果这个矩阵(XXT)1的维度特别大,怎么处理?答案是:数据降维

  • 如果模型是非线性的话,怎么处理呢?答案是:非线性模型

  • 以上过程全部为频率派的观点,贝叶斯派怎么做呢?答案是:生成模型

  • 线性回归与深度学习之间到底有什么关系?答案是:等我总结,哈哈

那么咱们的机器学习之旅正式开始喽。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值