遇到新问题
到目前为止,至少有几个问题需要解决:
如果解析解求不出来怎么办?答案是:迭代搜索求解(最优化问题)
如果样本数量特别大,怎么处理?答案是:递推求解(在线学习优化问题)
如果误差不是正态分布该怎么办呢?答案是:广义线性回归
如果这个矩阵(XXT)−1的维度特别大,怎么处理?答案是:数据降维
如果模型是非线性的话,怎么处理呢?答案是:非线性模型
以上过程全部为频率派的观点,贝叶斯派怎么做呢?答案是:生成模型
线性回归与深度学习之间到底有什么关系?答案是:等我总结,哈哈
那么咱们的机器学习之旅正式开始喽。