《概率论与数理统计》学渣笔记

文章目录

1 随机事件和概率

1.1 古典概型求概率

在古典概型中,样本空间中的每个基本事件发生的概率是相同的。如果样本空间中有 n n n 个可能的基本事件,而感兴趣的事件 A A A 包含其中的 m m m 个基本事件,则事件 A A A 发生的概率 P ( A ) P(A) P(A) 可以表示为:

P ( A ) = 事件  A  包含的基本事件数 样本空间Ω中的基本事件总数 = m n \boldsymbol{P(A) = \frac{\text{事件 } A \text{ 包含的基本事件数}}{\text{样本空间Ω中的基本事件总数}} = \frac{m}{n}} P(A)=样本空间Ω中的基本事件总数事件 A 包含的基本事件数=nm

随机分配问题

将 n 个球随机分配到 N 个盒子中 \boldsymbol{将n个球随机分配到N个盒子中} n个球随机分配到N个盒子中

分配方式不同分法的总数
每个盒子能装任意多个球 N n N^n Nn
每个盒子最多只能容纳一个球 A N n = N ! ( N − n ) ! A_N^n = \frac{N!}{(N-n)!} ANn=(Nn)!N!

“某指定n个”:只有1种情况
“恰有n个”:有 C N n C_N^n CNn种情况

简单随机抽样问题

从含有 N 个球的盒子中 n 次简单随机抽样 \boldsymbol{从含有N个球的盒子中n次简单随机抽样} 从含有N个球的盒子中n次简单随机抽样

抽样方式抽样法总数
先后有放回取n次 N n N^n Nn
先后无放回取n次 A N n = N ! ( N − n ) ! A_N^n = \frac{N!}{(N-n)!} ANn=(Nn)!N!
任取n个 C N n C_N^n CNn

抓阄模型:“先后无放回取 k k k个球”与“任取 k k k个球”的概率相同。

1.2 几何概型求概率

P ( A ) = A (子区域:长度,面积) Ω (几何区域:长度,面积) \boldsymbol{P(A)=\frac{A(子区域:长度,面积)}{Ω(几何区域:长度,面积)}} P(A)=Ω(几何区域:长度,面积)A(子区域:长度,面积)

1.3 重要公式求概率

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

2 一维随机变量及其分布

2.1 随机变量及其分布函数的定义

在这里插入图片描述

离散型随机变量及其概率分布(概率分布)

在这里插入图片描述
在这里插入图片描述

连续型随机变量及其概率分布(分布函数)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

2.2 离散型分布

0-1分布 X ∼ B ( 1 , p ) X \sim B(1,p) XB(1,p)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

二项分布 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

负二项分布(帕斯卡分布) X ∼ N b ( r , p ) X\sim Nb(r,p) XNb(r,p)

在伯努利试验中,每次试验中事件 A A A发生的概率为 p p p,若 X X X表示事件 A A A在第 r r r次发生时的试验次数,则
P { X = k } = C k − 1 r − 1 p r ( 1 − p ) k − r , k = r , r + 1 , . . . P\{X = k\} =C^{r - 1}_{k - 1} p^r (1-p)^{k-r} ,k=r,r+1,... P{X=k}=Ck1r1pr(1p)krk=r,r+1,...

E X = r p , D X = r ( 1 − p ) p 2 EX=\frac{r}{p},DX=\frac{r(1-p)}{p^2} EX=prDX=p2r(1p)

帕斯卡分布与几何分布有关, r = 1 r = 1 r=1时为几何分布。表首 r r r次即停止。

在这里插入图片描述

Y ∼ N b ( 2 , p ) Y\sim Nb(2,p) YNb(2,p) E Y = 2 p EY=\frac{2}{p} EY=p2

几何分布 X ∼ G ( p ) X\sim G(p) XG(p)

首中即停止(等待型分布),具有无记忆性 首中即停止(等待型分布),具有无记忆性 首中即停止(等待型分布),具有无记忆性

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

超几何分布 X ∼ H ( n , M , N ) X\sim H(n,M,N) XH(n,M,N)

在这里插入图片描述

泊松分布 X ∼ P ( λ ) X\sim P(λ) XP(λ)

用于描述稀有事件的概率 用于描述稀有事件的概率 用于描述稀有事件的概率
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

离散型→离散型

在这里插入图片描述

2.3 连续型分布

在这里插入图片描述
在这里插入图片描述

均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

指数分布 X ∼ E ( λ ) X\sim E(λ) XE(λ)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

正态分布 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ^2) XN(μ,σ2)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

正态分布,也叫高斯分布,是一种特定的概率分布。其曲线呈钟形,对称于均值。

正态分布的重要性源于以下几个原因:

  1. 自然现象的普遍性:很多自然和社会现象的测量结果近似服从正态分布,比如人的身高、考试成绩、误差分布等。原因是这些现象往往受到多种独立因素的共同影响,而根据中心极限定理,当这些影响因素足够多且相互独立时,其结果往往接近正态分布。

  2. 统计推断的基础:在统计学中,许多推断方法(如 t t t 检验、 z z z 检验、线性回归等)都基于数据服从正态分布的假设。正态分布的数学特性使得这些方法可以更有效地估计参数、检验假设。

  3. 中心极限定理的支持:无论数据原本的分布是什么样的,只要样本量足够大,样本均值的分布就会趋向于正态分布。这一理论使得我们可以在处理大样本时,使用正态分布来简化问题。

  4. 易于计算和理解:正态分布有简洁的数学表达式,且它的标准化(即转化为标准正态分布)使得很多复杂的计算变得简单、直观。

连续型→离散型

在这里插入图片描述

2.4 混合型分布

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

连续型→连续型(或混合型)

在这里插入图片描述


在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3 多维随机变量及其分布

3.1 定义

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3.2 求联合分布

在这里插入图片描述

二维均匀分布与二维正态分布

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 求边缘分布

在这里插入图片描述

3.4 求条件分布

在这里插入图片描述

3.5 判独立

在这里插入图片描述
在这里插入图片描述

3.6 用分布

在这里插入图片描述
在这里插入图片描述

3.7(离散型,离散型)→离散型

在这里插入图片描述

3.8(连续型,连续型)→连续型

分布函数法

在这里插入图片描述
在这里插入图片描述

卷积公式法(建议用这个)

在这里插入图片描述

最值函数的分布

在这里插入图片描述

在这里插入图片描述

3.10(离散型,连续型)→连续型【全集分解】

在这里插入图片描述

3.11 离散型→(离散型,离散型)

在这里插入图片描述

3.12 连续型→(离散型,离散型)

在这里插入图片描述

3.13 (离散型,离散型)→(离散型,离散型)

在这里插入图片描述

3.14 (连续型,连续型)→(离散型,离散型)

在这里插入图片描述

3.15 (离散型,连续型)→(离散型,离散型)

在这里插入图片描述

4 数字特征

4.1 数学期望

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4.2 方差

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.3 亚当-夏娃公式(全期望定理,全方差定理)

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

4.4 常用分布的期望和方差

分布期望 E ( X ) E(X) E(X)方差 D ( X ) D(X) D(X)
0 − 1 0-1 01分布 X ∼ B ( p ) X \sim B(p) XB(p) p p p p ( 1 − p ) p(1-p) p(1p)
二项分布 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p) n p np np n p ( 1 − p ) np(1-p) np(1p)
负二项分布(帕斯卡分布) X ∼ N b ( r , p ) X\sim Nb(r,p) XNb(r,p) r p \frac{r}{p} pr r ( 1 − p ) p 2 \frac{r(1-p)}{p^2} p2r(1p)
几何分布 X ∼ G ( p ) X\sim G(p) XG(p) 1 p \frac{1}{p} p1 1 − p p 2 \frac{1-p}{p^2} p21p
泊松分布 X ∼ p ( λ ) X\sim p(λ) Xp(λ) λ λ λ λ λ λ
均匀分布 X ∼ U ( a , b ) X\sim U(a,b) XU(a,b) E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b E ( X 2 ) = a 2 + a b + b 2 3 E(X^2) = \frac{a^2 + ab + b^2}{3} E(X2)=3a2+ab+b2 D ( X ) = ( b − a ) 2 12 D(X)=\frac{(b-a)^2}{12} D(X)=12(ba)2 求 a , b 的矩估计量: 1 n ∑ i = 1 n ( X i − X ‾ ) 2 = ( b − a ) 2 12 求a,b的矩估计量:\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2=\frac{(b-a)^2}{12} a,b的矩估计量:n1i=1n(XiX)2=12(ba)2 D ( X 2 ) = ( b − a ) 4 80 D(X^2) = \frac{(b - a)^4}{80} D(X2)=80(ba)4
指数分布 X ∼ E ( λ ) X\sim E(λ) XE(λ) E ( X ) = 1 λ E(X)=\frac{1}{λ} E(X)=λ1 E ( X 4 ) = 24 λ 4 E(X^4) = \frac{24}{\lambda^4} E(X4)=λ424 D ( X ) = 1 λ 2 D(X)=\frac{1}{λ^2} D(X)=λ21 D ( X 2 ) = 20 λ 4 D(X^2) = \frac{20}{\lambda^4} D(X2)=λ420
正态分布 X ∼ N ( μ , σ 2 ) X\sim N(μ,σ^2) XN(μ,σ2) X − X ‾ ∼ N ( 0 , n − 1 n σ 2 ) X-\overline{X}\sim N\left(0,\frac{n-1}{n}σ^2\right) XXN(0,nn1σ2) E ( X ) = μ E(X)=μ E(X)=μ E [ ( X − μ ) 4 ] = 3 σ 4 E[(X - \mu)^4] = 3\sigma^4 E[(Xμ)4]=3σ4 E [ ( X − X ‾ ) 4 ] = 3 ( n − 1 ) 2 σ 4 n 2 E[(X - \overline{X})^4] = \frac{3(n-1)^2\sigma^4}{n^2} E[(XX)4]=n23(n1)2σ4 D ( X ) = σ 2 D(X)=σ^2 D(X)=σ2 D ( X 2 ) = 2 σ 4 + 4 μ 2 σ 2 D(X^2) = 2\sigma^4 + 4\mu^2\sigma^2 D(X2)=2σ4+4μ2σ2 D ( S 2 ) = 2 σ 4 n − 1 D(S^2)=\frac{2σ^4}{n-1} D(S2)=n12σ4
标准正态分布 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) E ( X ) = 0 E(X)=0 E(X)=0 E ( X 4 ) = 3 E(X^4)=3 E(X4)=3 D ( X ) = 1 D(X)=1 D(X)=1 D ( X 2 ) = 2 D(X^2)=2 D(X2)=2
卡方分布 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n) E ( X ) = n E(X)=n E(X)=n E ( X 4 ) = n ( n + 2 ) ( n + 4 ) E(X^4) = n(n + 2)(n + 4) E(X4)=n(n+2)(n+4) D ( X ) = 2 n D(X)=2n D(X)=2n D ( X 2 ) = 4 n D(X^2)=4n D(X2)=4n
t t t分布 t ∼ t ( n ) t\sim t(n) tt(n) 0 0 0 n n − 2 \frac{n}{n-2} n2n
超几何分布(了解) X ∼ H ( n , M , N ) X\sim H(n,M,N) XH(n,M,N) n M N \frac{nM}{N} NnM n ⋅ M N ⋅ ( 1 − M N ) ⋅ N − n N − 1 n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right) \cdot \frac{N-n}{N-1} nNM(1NM)N1Nn
瑞利分布(了解) X ∼ R ( σ ) X \sim \text{R}(\sigma) XR(σ) π 2 σ \sqrt{\frac{π}{2}}σ 2π σ ( 2 − π 2 ) σ 2 (2-\frac{π}{2})σ^2 (22π)σ2

4.5 协方差

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4.6 相关系数

在这里插入图片描述
在这里插入图片描述

对于随机变量 X X X Y Y Y,若它们满足线性关系 Y = a X + b Y = aX + b Y=aX+b

  1. a > 0 a > 0 a>0 Y Y Y X X X 同方向变化(即 X X X 增加, Y Y Y 也增加),所以它们呈完全正相关,此时相关系数 ρ X Y = 1 \rho_{XY} = 1 ρXY=1

  2. a < 0 a < 0 a<0 Y Y Y X X X 反方向变化(即 X X X 增加, Y Y Y 减少),因此它们呈完全负相关,此时相关系数 ρ X Y = − 1 \rho_{XY} = -1 ρXY=1。如 X + Y = 1 X+Y=1 X+Y=1可以直接推出 ρ X Y = − 1 \rho_{XY} = -1 ρXY=1

4.7 独立性与不相关性的判定

在这里插入图片描述
在这里插入图片描述

4.8 切比雪夫不等式

在这里插入图片描述
在这里插入图片描述

5 大数定律与中心极限定理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.1 切比雪夫大数定律(均值依概率收敛到期望)

在这里插入图片描述

在这里插入图片描述

5.2 伯努利大数定律(频率依概率收敛到概率)

在这里插入图片描述

5.3 辛钦大数定律(均值依概率收敛到期望)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.4 中心极限定理(n足够大时,均收敛于正态分布)

在这里插入图片描述

在这里插入图片描述

6 统计量及其分布

6.1 统计量

统计量是不含未知参数的随机变量的函数 统计量是不含未知参数的随机变量的函数 统计量是不含未知参数的随机变量的函数
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.2 标准正态分布分布的上α分位数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.3 卡方分布 X ∼ χ 2 ( n ) X\sim \chi^2(n) Xχ2(n)

标准正态分布的平方 标准正态分布的平方 标准正态分布的平方

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.4 t分布 t ∼ t ( n ) t\sim t(n) tt(n)

标准正态分布的单打独斗 标准正态分布的单打独斗 标准正态分布的单打独斗
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

6.5 F分布 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)

卡方分布的单打独斗 卡方分布的单打独斗 卡方分布的单打独斗
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

6.6 正态总体下的常用结论

在这里插入图片描述

7 参数估计与假设检验

7.1 矩估计

在这里插入图片描述
在这里插入图片描述


矩估计法的核心思想是使得样本的样本矩等于总体的理论矩,从而通过这个等式来解出模型的参数。所谓“矩”就是随机变量的不同阶的期望,比如一阶矩是期望值,二阶矩是方差等。

参数估计能揭示数据规律,指导实际应用。描述数据预测未来优化决策风险评估是参数估计的主要用途。

  1. 描述数据特性:估计参数帮助我们理解数据的分布特性,比如正态分布的均值(数据中心)和方差(数据分散程度)。

  2. 预测与推断:通过估计参数,可以进行未来预测或假设检验。例如,使用时间序列模型的参数预测市场趋势。

  3. 建模与优化:许多模型依赖参数估计来优化决策,如线性回归中的回归系数,用于预测或分类。

  4. 风险管理与模拟:估计参数后可以进行数据模拟,帮助评估金融风险或仿真系统性能。

  5. 理论验证与模型选择:通过实际数据检验理论模型,参数估计帮助选择更适合的模型。

7.2 最大似然估计(MLE)

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

MLE的应用

概率模型 中,最大似然估计 (MLE) 通过学习模型的参数,优化模型,使得在给定这些参数的情况下,训练数据的观测结果发生的概率最大。简言之,最大似然估计的目标是选择一组参数,使得模型最能够生成或解释现有数据。在深度学习中,这种优化过程通常通过最小化负对数似然损失来实现。

  • 似然函数 是给定数据和模型的情况下,模型参数的联合概率。它评估在不同的参数值下,观测数据出现的可能性。
  • 对数似然函数 是似然函数的对数,它常用于优化,因为对数的运算简化了计算,尤其是在处理大规模数据时。
  • 负对数似然函数 是对数似然函数的负数,因为在优化问题中我们通常通过最小化损失来优化模型,而不是最大化似然。

因此,最大似然估计的目标 可以转化为 最小化负对数似然损失(NLL),这就是损失函数。在 机器学习和深度学习 中,我们通常用损失函数来度量模型的预测与真实数据之间的差距。

7.3 常见分布的矩估计量和最大似然估计量

X服从的分布矩估计量似然估计量
0 − 1 分布 0-1分布 01分布 p ^ = X ‾ \hat{p}=\overline{X} p^=X p ^ = X ‾ \hat{p}=\overline{X} p^=X
B ( n , p ) B(n,p) B(n,p) p ^ = X ‾ n \hat{p}=\frac{\overline{X}}{n} p^=nX p ^ = X ‾ n \hat{p}=\frac{\overline{X}}{n} p^=nX
G ( p ) G(p) G(p) p ^ = 1 X ‾ \hat{p}=\frac{1}{\overline{X}} p^=X1 p ^ = 1 X ‾ \hat{p}=\frac{1}{\overline{X}} p^=X1
P ( λ ) P(λ) P(λ) λ ^ = X ‾ \hat{λ}=\overline{X} λ^=X λ ^ = X ‾ \hat{λ}=\overline{X} λ^=X
U ( a , b ) U(a,b) U(a,b) a ^ = X ‾ − 3 n ∑ i = 1 n ( X i − X ‾ ) \hat{a}=\overline{X}-\sqrt{\frac{3}{n}\sum_{i=1}^n(X_i-\overline{X})} a^=Xn3i=1n(XiX) b ^ = X ‾ + 3 n ∑ i = 1 n ( X i − X ‾ ) \hat{b}=\overline{X}+\sqrt{\frac{3}{n}\sum_{i=1}^n(X_i-\overline{X})} b^=X+n3i=1n(XiX) a ^ = m i n { X 1 , X 2 , . . . , X n } \hat{a}=min\{X_1,X_2,...,X_n\} a^=min{X1,X2,...,Xn} b ^ = m a x { X 1 , X 2 , . . . , X n } \hat{b}=max\{X_1,X_2,...,X_n\} b^=max{X1,X2,...,Xn}
E ( λ ) E(λ) E(λ) λ ^ = 1 X ‾ \hat{λ}=\frac{1}{\overline{X}} λ^=X1 λ ^ = 1 X ‾ \hat{λ}=\frac{1}{\overline{X}} λ^=X1
N ( μ , σ 2 ) N(μ,σ^2) N(μ,σ2) μ ^ = X ‾ \hat{μ}=\overline{X} μ^=X σ 2 ^ = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \hat{σ^2}=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2 σ2^=n1i=1n(XiX)2 μ ^ = X ‾ \hat{μ}=\overline{X} μ^=X σ 2 ^ = 1 n ∑ i = 1 n ( X i − X ‾ ) 2 \hat{σ^2}=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2 σ2^=n1i=1n(XiX)2

7.4 无偏性:求期望

在这里插入图片描述

7.5 有效性:比方差,方差越小越有效

在这里插入图片描述

7.6 一致性(相合性):大数定律

常用切比雪夫不等式、辛钦大数定律判一致性 常用切比雪夫不等式、辛钦大数定律判一致性 常用切比雪夫不等式、辛钦大数定律判一致性
在这里插入图片描述

在这里插入图片描述

7.7 区间估计

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

7.8 假设检验

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

选择检验统计量

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7.9 两类错误

需要注意的几点:

  1. 通常用检验的显著性水平 α α α来表示在检验中允许犯第一类错误的概率。
  2. 两类错误之和可以大于1。
  3. 增大样本容量不一定能降低同时犯两类错误的概率。

第一类错误:弃真(直接算落入拒绝域的概率)

在这里插入图片描述

第二类错误:取伪(直接算落入收敛域的概率)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

### 概率论在IT领域的应用 概率论作为数的一个重要分支,其核心在于研究随机现象的规律性和不确定性。它不仅是统计的重要基石,还在现代信息技术领域中扮演着至关重要的角色。以下是概率论在IT领域的一些具体应用场景: #### 1. 数据科机器习 在数据科和机器习中,概率论提供了处理不确定性的工具。例如,贝叶斯定理被广泛应用于分类器的设计中[^4]。通过计算先验概率和后验概率,可以有效解决诸如垃圾邮件过滤、图像识别等问题。 ```python def bayesian_classifier(prior, likelihood, evidence): posterior = (prior * likelihood) / evidence return posterior ``` 上述代码展示了如何基于贝叶斯公式实现简单的分类器逻辑。 #### 2. 大数据分析 大数据通常具有高维度特性,因此需要借助多维随机变量及其分布来设计高效的数据模型。此外,马尔可夫链(Markov Chain)作为一种经典的随机过程模型,在推荐系统、搜索引擎排名算法等领域得到了广泛应用。 #### 3. 计算机网络 在网络流量分析方面,利用泊松分布等概率模型可以帮助预测网络拥塞情况并优化资源分配策略[^3]。同时,在网络安全防护机制里也经常运用到条件概率的概念来进行入侵检测系统的构建。 #### 4. 软件工程 软件测试阶段可以通过蒙特卡罗模拟方法评估程序性能指标;而在软件可靠性度量上,则可能涉及到指数分布等相关知识。 --- ### 数基础概述 为了更好地掌握以上提到的概率论相关内容以及它们在IT行业里的实际用途,建议从以下几个方面入手打好数根基: - **离散数**: 包括但不限于集合运算规则、组合原理等内容对于理解某些特定场景下的概率计算至关重要. - **线性代数**: 当探讨多元正态分布或者主成分分析(PCA)降维技术时离不开矩阵操作技巧. - **微积分**: 掌握极限定义有助于深入剖析连续型随机变量密度函数性质;而导数则能辅助求解最大似然估计(Maximum Likelihood Estimation). 综上所述,扎实的数功底配合丰富的实践机会将是通往精通之路不可或缺的因素之一。 ---
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

果子当夜宵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值