- 博客(912)
- 资源 (44)
- 收藏
- 关注
原创 1.9 提示词安全
摘要:文章介绍了"奶奶漏洞"这一针对ChatGPT的提示词攻击手段,通过情感操纵(如让AI扮演奶奶念Windows序列号)突破AI安全限制。分析了四种提示词攻击类型:角色扮演、分步诱导、情感操纵和编码混淆,以及三种防御措施:注入防御、输出防御和有害提示识别模型。文章揭示了大型语言模型面临的安全风险,以及如何通过技术手段防范恶意提示词攻击,为AI安全防护提供了实用参考。(149字)
2025-07-06 22:19:30
596
原创 1.8 提示词优化
我们在使用大模型的时候,同一任务使用不同表述的提示词,可能得到差异巨大的结果,因为模型的性能高度依赖输入提示词的质量。我们可以通过提示词优化来更高效地获取理想输出。
2025-07-06 21:39:17
684
原创 1.18 LA Kernel日志调试
本文介绍了Linux内核日志级别的分类与配置方法。内核日志分为8个等级(0-7),从EMERG到DEBUG。通过/proc/sys/kernel/printk可查看当前配置的4个日志级别参数。文章详细说明了如何通过dmesg命令、启动参数和运行时修改来调整日志级别,并特别针对QNX和Android系统给出了具体的日志配置方案,包括修改配置文件、adb命令和编译时参数设置等方法。这些技术对于系统调试和日志管理具有实用参考价值。
2025-05-25 14:26:25
112
原创 1.7 提示词工程(三)
本文探讨了如何通过使用外部工具和系统化测试来优化模型性能。首先,介绍了利用基于嵌入的搜索技术实现高效知识检索的方法,通过将相关信息动态添加到模型输入中,提升回应的准确性和时效性。其次,讨论了通过代码执行进行精确计算或调用外部API,以解决语言模型在复杂计算中的局限性。此外,还介绍了如何使模型能够访问特定功能,通过生成符合描述的函数参数并执行函数调用。在系统化测试方面,强调了设计全方位评估程序的重要性,以确保更改对总体性能产生积极影响,并提出了以标准答案为基准评估模型输出的方法。
2025-05-20 11:21:42
985
原创 1.6 提示词工程(二)
就像学生在考试中借助笔记能够帮助其取得更好的成绩一样,为这类模型提供参考文本也可减少其制造虚假信息的情况。如果输入信息中已经包含了相关知识,就可以直接要求模型在回答问题时引用所提供的文件中的段落。值得注意的是,输出中的引用可以通过在所提供的文件中匹配字符串来进行验证。由于所有模型都受到上下文窗口大小的限制,我们需要一种方法来动态地查询与提出的问题相关的信息。如果我们能向模型提供与提问内容相关的可靠信息,我们就可以指导模型利用这些信息来构建答案。(嵌入式技术)来实现有效的知识检索。
2025-05-20 11:21:27
808
原创 1.5 提示词工程(一)
随着大语言模型(LLM)和多模态模型的普及,AI已从简单的分类和预测工具发展为能够生成复杂内容的强大工具。然而,这些模型的“黑箱”特性使得其内部机制难以精确控制,因此需要通过提示词工程来引导模型输出符合需求的结果。提示词工程(Prompt Engineering)是生成式AI模型中的关键技术,通过优化输入提示,引导模型生成更准确和相关的输出。这一技术不仅提升了AI产品的竞争力,还催生了“提示词工程师”这一新兴职业,成为企业优化AI交互体验的重要手段。
2025-05-11 14:57:10
917
原创 1.3 AI常见术语梳理
神经网络是一种受生物神经元启发的计算模型,由互连的节点(神经元)组成,通过调整连接权重学习数据中的复杂模式。其核心思想是分层抽象:底层处理原始数据(如像素),高层提取高级特征(如物体轮廓)。批量大小(Batch Size):单次训练样本数(影响内存与稳定性)。可以用减少幻觉,提升事实准确性。精确率(Precision)与召回率(Recall)的调和平均。隐藏层:通过权重矩阵计算特征(如全连接层、卷积层)。将用户流量随机分为A组(旧模型)和B组(新模型)。输出层:生成预测结果(如分类概率、生成文本)。
2025-04-20 14:49:26
685
原创 1.2 大模型技术架构
模型名称架构类型参数量级核心创新点文心一言(ERNIE)编码器-解码器混合架构千亿级知识增强、多模态统一建模通义千问(Qwen)纯解码器Transformer720B长上下文支持、多模态扩展混元(Hunyuan)混合专家(MoE)万亿级稀疏激活、多任务联合训练云雀(Lark)纯解码器优化架构未公开轻量化部署、端云协同混合专家+稀疏注意力16B~146B高效推理、数学与代码优化。
2025-04-20 14:15:27
919
原创 1.1 初识AI
AI已不再是可选项,而是必备基本技能。它是每个从项目,到产品,到研发再到测试质量交付,甚至各行各业的各个环节的基本技能。AI技术正在深刻重塑行业格局和每一个工程师,每一个人的工作模式。作为一个从业操作系统超过10年的工程师来说,无论产品形态是手机,IOT,汽车,AI已无处不在。行业领域 AI影响维度 典型案例软件工程 ★★★★★★★★★☆ (9/10) GitHub Copilot、AutoML、AI自动化测试。
2025-04-13 16:51:57
652
原创 【系统稳定性】1.13 解析gcore
gcore是什么?高通骁龙8295 (QCOM 8295) 芯片在QNX操作系统下产生的gcore文件,是程序崩溃时系统生成的内存转储文件,包含了程序崩溃时的内存状态、寄存器信息、调用栈等重要信息。gcore文件通常位于/var/log目录下。
2025-03-23 14:39:51
168
原创 【系统稳定性】1.16 GPU(二)
QCOM Adreno GPU 通过硬件和软件的结合,为这些 API 提供底层支持,从而实现高效的图形渲染和计算任务。简单来说,开发者可以通过这些API,在QCOM GPU上实现图形相关的开发。以OpenGL ES为例,开发者可以通过OpenGL ES来利用Adreno GPU 提供了专用的硬件单元(如顶点着色器、片段着色器、纹理单元)来执行相关的的渲染任务。高通的 GPU 驱动程序实现了 OpenGL ES 的 API 接口,将 OpenGL ES 的调用映射到 Adreno GPU 的硬件指令。
2025-03-23 14:00:22
199
原创 2.4 【模型部署】Windows本地部署DeepSeek模型 --- Ollama篇(下)
大型语言模型(如 LLaMA、GPT 等)通常包含数十亿甚至数百亿个参数,导致模型文件非常大。为了便于管理和传输,模型文件会被分割成多个较小的分片。每个分片文件包含模型的一部分参数或权重,加载时需要将所有分片合并才能完整地加载模型。无网络连接,直接通过Ollama本地已经本地已经下载好的的Deepseek模型。
2025-03-09 22:51:01
1258
原创 2.3【模型部署】 Windows本地部署DeepSeek模型 --- Ollama篇(上)
Ollama 是一个本地部署大模型的开源项目,旨在简化大型语言模型(LLMs)的本地部署和使用。它提供了一个简单易用的框架,让用户能够在自己的设备上运行和微调各种语言模型,而无需依赖云服务或复杂的配置。Ollama 的目标是让开发者、研究人员和爱好者能够更轻松地探索和应用大型语言模型。
2025-03-09 19:10:35
1015
原创 【系统稳定性】1.15 GPU(一)
Vertex(顶点),Texture(纹理),ALU(算数逻辑运算)分别代表了GPU处理图形数据的不同阶段和功能模块。在3D图形渲染中,顶点是构成3D模型的基本单元。顶点是图形学中的一个基本概念,指的是3D空间中的一个点,通常用坐标(x, y, z)表示。GPU中包含大量的ALU,能够同时处理多个数据(如顶点、像素),实现高性能并行计算。运行在GPU上的程序,负责计算每个像素的最终颜色,通常会结合纹理数据和光照信息。每个ALU可以执行基本的算术操作(如加、减、乘、除)和逻辑操作(如与、或、非)。
2025-03-09 14:08:46
172
原创 【系统稳定性】1.17 SSR
Subsystem Restart即子系统重启,这是一种回复策略或子系统兜底机制,旨在确保系统在某个子系统出现故障时能够自动恢复,而无需重启整个设备。SSR通过监控子系统的健康状态,并在检测到故障时触发重启,以恢复其功能。
2025-03-09 13:48:01
264
原创 【显示】3.1 Android 从Activity到Display链路概括
Activity→→ 创建视图树(View Hierarchy)。Window→ 管理DecorView和Surface。→ 触发MeasureLayoutDraw流程。Surface→ 作为绘图表面,接收Canvas的绘制内容。→ 合成多个Surface的内容。→ 将合成后的帧传递给显示控制器。Display→ 最终上屏显示。
2025-03-04 08:20:06
241
原创 【系统稳定性】1.12 QVM稳定性问题分析(二)
如前面提到的,qmv中la异常,就是linux kernel及其android os相关的异常引发的系统异常,该异常通常不会导致qnx或域控整机重启。我们可以通过分析,la_gvm.txt,或slog中过滤vmm_service或qvm,查看qvm状态信息。包括文件系统损坏,如存储设备上的文件系统(如ext4、F2FS)损坏,导致内核无法读取或写入数据,以及分区挂只读等。这种场景下,外设驱动未正确处理硬件状态,导致任务卡死。驱动或内核异常,如内存踩踏等导致的kernel panic,而导致qvm重启。
2025-03-02 14:08:46
135
原创 【系统稳定性】1.11 QVM稳定性问题分析(一)
在QVM(Quantum Virtual Machine)作为HOST QNX的Guest,同样会遇到重启、Watchdog(看门狗)等稳定性问题。qvm进程异常qmv中la异常qvm进程异常就很好理解了,我们就把他作为一个qnx内核上运行的一个native服务来看待,那么他具备所有进程所具备的基本属性。qvm进程异常包含进程本身设计问题,如锁同步的问题,依赖问题,资源调度问题等。qmv中la异常,就是linux kernel及其android os相关的异常引发的系统异常。
2025-03-01 22:05:43
302
原创 【系统稳定性】1.10 QNX Crash之Ramdump的分析(二)
系统正常可用,但串口无输出,且无法输入,可能是串口阻塞,串口无序频繁打印。当然除了串口阻塞的情况,也处存在包括前面提到的例如当前已经执行令了某种指令,或者本身也就没有打印,可以Ctrl+C强制退出指令尝试下。调试端口可用,但调试可用,执行卡顿。串口不响应或不能输入输出也有一种可能,例如当前已经执行令了某种指令,或者本身也就没有打印,可以Ctrl+C强制退出指令尝试下。或者另一种可能,系统资源跑飞,如cpu拉爆了,串口指令响应比较慢,可以wait a minite,and check。
2025-03-01 20:36:56
184
原创 2.2 【模型部署】本地部署DeepSeek模型 --- LM Studio篇(下)
选择不同的runtime,如下我通过选择了CPU llama.cpp (Windows)解决该问题,可以根据自己的硬件配置来选择不同的runtime。
2025-02-23 22:47:47
1685
原创 2.1【模型部署】本地部署DeepSeek模型 --- LM Studio篇(上)
LM Studio 是一款专为本地运行大型语言模型(LLMs)设计的工具,允许用户在个人电脑上轻松加载、管理和运行各种开源语言模型(如 LLaMA、Falcon、GPT-J 等)。通过LM Studio我们可以实现模型的完全离线运行,所有模型和数据都在本地处理,无需联网,保护隐私。它支持多种模型格式,包括兼容 Hugging Face 的模型格式(如 .bin、.ggml 等),方便用户导入和使用各种开源模型。
2025-02-23 22:41:53
1447
原创 【系统稳定性】1.14 冻屏
通过QNX查看是否发生gcore,及la ramdump(adb/bgm(obd)/redmoon/acu连接)这部分排查framework部分,时间的传递链路是否正常,比如是否有view消费等。替换mtouch驱动库(慎用,替换后会reset Touch芯片,会导致现象消失)以及排查/var/log/中是否io-pkt-v4-hc的反复coredump。检查adb链接,qnx连接(串口,acu,gbg,obd,redmoon等)查看/var/log/查看是否正在dump gcore;
2025-02-03 13:11:00
312
原创 警告:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
由于tensorflow默认分布是在没有CPU扩展的情况下构建的,例如SSE4.1,SSE4.2,AVX,AVX2,FMA等。高级矢量扩展(AVX)是英特尔在2008年3月提出的英特尔和AMD微处理器的x86指令集体系结构的扩展,英特尔首先通过Sandy Bridge处理器在2011年第一季度推出,随后由AMD推出Bulldozer处理器在2011年第三季度.AVX提供了新功能,新指令和新编码方案。特别是,AVX引入了融合乘法累加(FMA)操作,加速了线性代数计算,即点积,矩阵乘法,卷积等。
2025-02-01 11:27:55
412
原创 Build and install error messages
Exception:...Exception:...Exception:...line 4, in.........Exception:...line 4, in...
2025-02-01 11:27:12
970
原创 tensorflow_self_check.py
#"""import impimport systry:else:print("""WARNING!try:print("""try:print("""try:print("""try:print("""try:print("""try:print()else:print("""print("""main()
2025-02-01 11:26:31
878
原创 Common installation problems
We are relying on Stack Overflow to document TensorFlow installation problems and their remedies. The following table contains links to Stack Overflow answers for some common installation problems. If you encounter an error message or other installation
2025-02-01 11:26:04
386
原创 error: RPC failed; curl 56 OpenSSL SSL_read: SSL_ERROR_SYSCALL, errno 10054
Descriptions:Solutions:
2025-02-01 11:24:17
806
原创 fatal: unable to access ‘https://github.com/tensorflow/models/‘: OpenSSL SSL_read: SSL_ERROR_SYSCALL
Solutions:
2025-02-01 11:22:14
151
原创 【环境搭建】1.2 构建(一)
代码检出以后,通过执行下面的指令来安装其他相关的构建依赖项。获取在 Linux 上构建所需的所有依赖项,以及所有特定于 Android 的依赖项(我们需要一些常规 Linux 依赖项,因为 Android 构建包含一堆 Linux 工具和实用程序)。
2025-02-01 03:00:00
1227
原创 【环境搭建】1.1源码下载与同步
当前的开发背景是基于Google的开源Chromium,来开发Android设备的浏览器方案。一,系统要求大多数开发都是在 Ubuntu 上完成的,所以建议最好是在Ubuntu上完成开发环境的搭建。
2025-01-31 11:51:40
720
原创 [实践篇]13.32 QNX下,C++编程未捕获异常导致的CPU异常高占用
所以说,QNX上c++的异常处理并不是C++标准所定义的,这部分也得到了QNX官方的确认。那么当我们在QNX(sdp7.1)上使用C++编写程序时要注意所调用函数是否为抛出异常,如果会就要catch这些异常。线程2在抛出一个未捕获的异常之后,并没有如预期那样的导致进程coredump并退出,而是在进程中其他线程正常运行的情况下,抛出异常的线程异常占用cpu,导致cpu跑飞。排除死等或递归等错误用法的情况,还有可能是是在QNX侧调用C++系统API的时候,没有在子线程中捕获异常所导致。
2025-01-31 10:19:24
357
原创 01.双Android容器解决方案
虚拟机与容器是两种虚拟化技术。虚拟机提供了硬件级的虚拟化方案,也就是每个虚拟机都有自己的操作系统副本,包括内核,系统库和用户空间。容器则提供了操作系统级的虚拟化,它们共享宿主主机的内核,但拥有自己的文件系统,进程空间和网络接口。虚拟机模拟硬件并运行操作系统需要很大的性能开销,启动和运行速度比较慢。容器直接运行在宿主机上,启动速度快,性能功耗低,几乎接近裸机。
2025-01-27 13:14:58
1529
原创 【提高篇】3.7 GPIO(七,GPIO开发模型 一)
_HAL_RCC_GPIOx_CLK_ENABLE() //其中x指的是gpio的组。同样的,在官方hal库中,我们通过下面的函数来实现工作模式的初始化。gpio的初始化主要包括时钟的使能和工作模式的设置。
2024-12-08 21:42:23
559
原创 【基础篇】1.11 Keil工具踩坑
这通常在项目的编译设置(Options for Target)中的“Output”或“Debug”选项卡中设置。查看是否选择了“Browse Information”选项,并确保为其指定了正确的路径。也就是表示Keil无法在指定的输出文件夹中找到有效的浏览信息文件(通常是.htm或.html文件),这些文件用于在Keil的浏览器中显示程序的结构,如函数调用关系、变量定义等。一,No Browser Information available in'..\..\Output\atk_fxxx'
2024-12-08 20:48:58
415
原创 【提高篇】3.6 GPIO(六,寄存器介绍,下)
BSRR 寄存器 32 位有效,对于低 16 位(0-15),我们往相应的位写 1(BSy=1),那么对应的 IO 口会输出高电平,往相应的位写 0(BSy=0),对 IO 口没有任何影响,高 16 位(16-31)作用刚好相反,对相应的位写 1(BRy=1)会输出低电平,写 0(BRy=0)没有任何影响,y=0~15。当 CPU 写访问该寄存器,如果对应的某位写 0(ODRy=0),则表示设置该 IO 口输出的是低电平,如果写 1(ODRy=1),则表示设置该 IO 口输出的是高电平,y=0~15。
2024-12-01 19:30:07
1241
原创 【提高篇】3.5 GPIO(五,寄存器介绍,上)
我们通过对GPIO一系列寄存器的配置,可以实现对GPIO引脚的各种控制,包括输入输出模式、上下拉电阻、中断配置等。前面也提到过,以STM32F4为例,它有GPIOA到GPIOH共8组GPIO端口,其每组GPIO(命名方式为GPIOA、GPIOB、GPIOC等)都有一个对应的寄存器组,这些寄存器共同控制该组GPIO的各个引脚。这里要注意的是,。将一个GPIO组的所有引脚的配置信息集中在一个寄存器组中,可以方便地进行统一管理和配置。
2024-12-01 19:08:50
982
pageowner 解析工具
2022-05-13
SELinux4AndroidO
2018-02-05
recovery_l10n
2015-04-10
解决Android4.3彩信幻灯片中gif格式图片不能正常播放
2014-07-26
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人