伽马函数的总结
@(概率论)
Γ(x)=∫0+∞tx−1e−tdt\Gamma(x) = \int_0^{+\infty}t^{x-1}e^{-t}dtΓ(x)=∫0+∞tx−1e−tdt
这个可以形象理解为用一个伽马刀,对x动了一刀,于是指数为x-1,动完刀需要扶着梯子(-t)才能走下来。这样,就记住了关键的tx−1,−tt^{x-1},-ttx−1,−t.
性质:
- $\Gamma(x+1) = x\Gamma(x) $
- $\Gamma(x) > 0, 任意x\in(0,+\infty) $
- $\Gamma(1) = 1 $
用到概率论中的计算形式是:
令t=u2,dt=2udut = u^2, dt = 2udu