Spark RDD distinct 算子

本文详细介绍了Spark中的distinct算子的工作原理,通过源码分析展示了如何利用reduceByKey实现去重功能,并提供了使用示例。重点讨论了distinct与PairRDD的区别,以及在实际项目中的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.引言

使用spark很久第一次用到 distinct 算子,趁热打铁熟悉一下 distinct 的操作。

 

二.源码

distinct 算子会返回一个新的 RDD,这里的每一个元素都是唯一的不会有重复。


  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T] = withScope {
    map(x => (x, null)).reduceByKey((x, y) => x, numPartitions).map(_._1)
  }

  /**
   * Return a new RDD containing the distinct elements in this RDD.
   */
  def distinct(): RDD[T] = withScope {
    distinct(partitions.length)
  }

 

三.distinct 使用示例

随机生成20个(Int, Char)格式truple,并序列化为5个Partiton,使用 distinct去重。

    // Spark 初始化
    val sc = new SparkContext(conf)

    val random = scala.util.Random
    random.setSeed(100)
    sc.setLogLevel("error")
    val randomChar = ('a' to 'z').zipWithIndex.map(x => (x._2, x._1)).toMap
    val randomSample = (0 until 20).map(x => {
      val num = random.nextInt(100)
      val char = randomChar(random.nextInt(26))
      (num, char)
    })

    // Distinct 实现
    val rdd = sc.parallelize(randomSample, 5)
    println("Partition Number Count: " + rdd.getNumPartitions)
    val distinctArr = rdd.distinct.collect()
    println("Distinct Number Count: " + distinctArr.length)
    println(distinctArr.sorted.mkString(" "))

 

 

四.DIY Distinct

distinct的源码也很简单,通过 reduceByKey 就能实现。 

    // 源码实现
    println("Diy Demo: ")
    val rdd2 = sc.parallelize(randomSample, 5)
    val distinctArr2 = rdd2.map(x => (x, null)).reduceByKey((x, y) => x, 5).map(_._1).collect()
    println(distinctArr2.sorted.mkString(" "))

 

Tips:

Distinct 是对 RDD 的整个内容去重,不管是 truple 还是 String 或者是其他类型,这里容易和 pairRdd 混淆,最开始认为 distinct 是对 PairRDD 的 key 进行去重,后来发现不是。

### Spark RDD 转换算子的使用方法及示例 #### 什么是转换算子? 在Spark中,RDD(弹性分布式数据集)支持两种主要的操作:**转换操作**和**动作操作**。转换操作是对现有RDD执行的一种操作,返回一个新的RDD。这些操作不会立即触发计算,而是构建一个逻辑计划来描述如何从其他已有的RDD派生新的RDD[^1]。 #### 常见的转换算子及其功能 以下是几个常见的转换算子以及它们的功能: 1. **map(func)** 对RDD中的每一个元素应用函数`func`并返回一个新的RDD。 2. **filter(func)** 返回一个新的RDD,其中只包含满足条件`func(x)`为真的元素。 3. **flatMap(func)** 类似于`map`,但是可以将每个输入项映射到多个输出项。 4. **union(otherDataset)** 返回两个RDD的并集,即包含两个RDD中所有元素的新RDD[^2]。 5. **join(otherDataset, numPartitions)** 执行两组键值对RDD之间的内连接操作。 6. **groupByKey([numTasks])** 当处理由(key, value)组成的RDD时,此操作会针对每个key聚合所有的value。 7. **reduceByKey(func, [numTasks])** 针对具有相同key的所有values调用指定的二元运算符`func`,从而减少该key对应的values数量。 8. **sortByKey(ascending=True, numPartitions=None)** 按照key排序,可以选择升序或者降序排列。 9. **distinct([numTasks])** 删除重复的数据条目,保留唯一的结果集合。 --- #### 示例代码展示 下面是一些具体的例子,展示了上述提到的一些常用转换算子的实际运用方式。 ##### map() 示例 ```python rdd = sc.parallelize([1, 2, 3, 4]) mapped_rdd = rdd.map(lambda x: x * 2) print(mapped_rdd.collect()) # 输出: [2, 4, 6, 8] ``` ##### filter() 示例 ```python filtered_rdd = rdd.filter(lambda x: x % 2 == 0) print(filtered_rdd.collect()) # 输出: [2, 4] ``` ##### flatMap() 示例 ```python words_list = ["hello world", "spark is great"] rdd_words = sc.parallelize(words_list) flattened_rdd = rdd_words.flatMap(lambda line: line.split(" ")) print(flattened_rdd.collect()) # 输出: ['hello', 'world', 'spark', 'is', 'great'] ``` ##### union() 示例 ```python rdd1 = sc.parallelize([1, 2, 3]) rdd2 = sc.parallelize([4, 5, 6]) united_rdd = rdd1.union(rdd2) print(united_rdd.collect()) # 输出: [1, 2, 3, 4, 5, 6] ``` ##### reduceByKey() 示例 ```python pairs = sc.parallelize([('a', 1), ('b', 1), ('a', 1)]) reduced_pairs = pairs.reduceByKey(lambda a, b: a + b) print(reduced_pairs.collect()) # 输出: [('a', 2), ('b', 1)] ``` --- ### 总结 通过以上介绍可以看出,Spark RDD 的转换算子提供了强大的工具用于数据变换和准备阶段的工作。每种转换都有其特定用途,在实际开发过程中可以根据需求灵活选用不同的转换算子组合实现复杂业务逻辑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BIT_666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值