C/C++ 实现QR(正交三角)分解算法详解及源码

QR分解是一种矩阵分解方法,将一个矩阵分解为一个正交矩阵和一个上三角矩阵的乘积。它在数值计算和线性代数中有广泛应用。

实现QR分解算法的步骤如下:

  1. 对矩阵进行初等变换,使矩阵的列向量组成一个正交矩阵。
  2. 使用Gram-Schmidt过程,将矩阵中的列向量正交化。
  3. 通过正交化的列向量构建一个单位正交矩阵Q。
  4. 计算上三角矩阵R,使得原矩阵A = QR。

QR分解算法的优点:

  1. QR分解可以用于求解线性方程组,计算效率高。
  2. QR分解可以用于计算特征值和特征向量。
  3. QR分解可以用于计算矩阵的逆。

QR分解算法的缺点:

  1. QR分解可能会产生数值不稳定性问题,特别是在计算特征值时。
  2. QR分解的计算复杂度较高,特别是对于大型矩阵。

以下是使用C++语言实现QR分解算法的示例代码:

#include <iostream>
#<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猿来如此yyy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值