最短路径Dijkstra算法是一种用于找到图中两个节点之间最短路径的算法。它的基本思想是从起始节点开始,依次选择与当前节点距离最近的节点,并更新到达其他节点的最短路径。具体步骤如下:
- 创建一个距离数组dist,用于记录从起始节点到每个节点的当前最短路径长度,初始时将起始节点的距离设为0,其他节点的距离设为无限大。
- 创建一个集合visited,用于记录已经找到最短路径的节点。
- 重复以下步骤,直到visited包含所有节点:
- 从未访问的节点中选择一个距离最短的节点,将其加入visited集合。
- 对于与该节点相邻的节点,如果经过该节点到达这些节点的距离比当前记录的距离更短,则更新这些节点的距离。
最短路径Dijkstra算法的优点包括:
- 可以找到带权重的最短路径,适用于带权重的图。
- 算法简单直观,易于实现。
最短路径Dijkstra算法的缺点包括:
- 对于包含负权边的图,算法会失效。
- 当图中的节点数量很大时,算法的时间复杂度较高。
下面是使用Python实现最短路径Dijkstra算法的代码:
def dijkstra(graph