基于机器学习猫狗识别系统 毕业论文+项目源码及数据库文件

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

 

本研究开发了一套基于卷积神经网络(Convolutional Neural Network, CNN)的猫狗图像分类系统,旨在高效准确地区分猫与狗的图片。该系统利用Python编程语言和PyTorch深度学习框架,在Jupyter Notebook、PyCharm或Visual Studio Code等集成开发环境中实现。

项目采用了Kaggle提供的25000张猫狗识别数据集,在项目实施过程中,数据集按照8:2的比例划分为训练集和测试集,确保了模型训练和验证的充分性。为了提升模型的泛化能力和防止过拟合,本系统对图像进行了多种数据增强处理,包括随机旋转、水平翻转、裁剪及标准化等操作,以增加训练数据的多样性。模型设计上,采用了典型的CNN架构,由多个卷积层、池化层、批量归一化层、全连接层以及ReLU激活函数构成,这种结构能够有效捕捉图像的局部和全局特征信息。在训练阶段,模型通过反向传播算法不断调整权重参数,实现了对猫狗图像的精准分类。训练过程中,损失值和准确率被记录下来,并用于绘制损失曲线和准确率曲线,直观地展现了模型的学习动态和收敛情况。在评估阶段,除了计算并打印出详细的分类报告外,还从训练集和测试集中随机选取了10张图像进行预测,通过对比原始标签与预测标签的颜色变化(绿色表示正确分类,红色表示错误分类),直观展示了模型的实际分类效果。此外,本项目还利用PyQt5库构建了一个用户友好的图形用户界面,允许用户上传任意图片至系统进行实时预测。该界面不仅显示出预测的动物类别,还附带了相应的置信度分数,极大地增强了系统的实用性和交互性。

综上所述,本研究通过精心设计的CNN架构和有效的数据预处理方法,成功开发了一套高性能的猫狗图像分类系统,并通过图形界面提升了用户体验,为实际应用提供了坚实的技术支持。

关键字:猫狗识别;卷积神经网络CNN;Cats vs. Dogs(猫狗大战)数据集;图形用户界面(GUI);PyTorch

Abstract

This study develops a Convolutional Neural Network (CNN)-based system for the classification of cat and dog images, aiming to efficiently and accurately distinguish between pictures of cats and dogs. The system is implemented using the Python programming language and the PyTorch deep learning framework within integrated development environments such as Jupyter Notebook, PyCharm, or Visual Studio Code.

The project utilizes the Kaggle Cats vs. Dogs dataset, which consists of 25,000 labeled images, with 12,500 images each of cats and dogs. During the project's implementation, the dataset is split into training and testing sets at an 8:2 ratio to ensure adequate model training and validation. To enhance the model's generalization capability and prevent overfitting, various data augmentation techniques are applied to the images, including random rotation, horizontal flipping, cropping, and normalization, thereby increasing the diversity of the training data.The model architecture follows a typical CNN design, comprising multiple convolutional layers, pooling layers, batch normalization layers, fully connected layers, and ReLU activation functions. This structure effectively captures both local and global feature information from the images. During the training phase, the model employs the backpropagation algorithm to iteratively adjust its weight parameters, achieving precise classification of cat and dog images. Throughout training, loss values and accuracy metrics are recorded and used to plot loss and accuracy curves, providing a visual representation of the model's learning dynamics and convergence.In the evaluation phase, in addition to generating detailed classification reports, the system randomly selects 10 images from both the training and testing sets for prediction. The original labels are compared with the predicted labels, with correct classifications indicated by green and incorrect ones by red, offering an intuitive visualization of the model's performance. Furthermore, this project leverages the PyQt5 library to create a user-friendly graphical user interface (GUI), allowing users to upload arbitrary images for real-time prediction. The interface not only displays the predicted animal category but also provides a corresponding confidence score, significantly enhancing the system's practicality and interactivity.

In summary, this research successfully develops a high-performance cat and dog image classification system through a carefully designed CNN architecture and effective data preprocessing methods. The inclusion of a GUI improves user experience, providing robust technical support for practical applications.

Keywords:Cat and Dog Recognition; Convolutional Neural Network (CNN); Cats vs. Dogs Dataset; Graphical User Interface (GUI); PyTorch

目  录

摘  要............................................................................................................................ I

Abstract........................................................................................................................ Ⅲ

第1章 引言............................................................................................................. - 1 -

1.1 项目背景........................................................................................................ - 1 -

1.2 项目计划........................................................................................................ - 1 -

1.3 技术支持........................................................................................................ - 2 -

第2章 数据分析..................................................................................................... - 4 -

2.1 数据集来源.................................................................................................... - 4 -

2.2 数据集分配.................................................................................................... - 4 -

2.3 数据预处理.................................................................................................... - 6 -

2.3.1 数据集路径及标签.................................................................................. - 6 -

2.3.2 数据增强.................................................................................................. - 6 -

2.3.3 加载数据集.............................................................................................. - 7 -

第3章 模型训练与测试......................................................................................... - 8 -

3.1 模型构建........................................................................................................ - 8 -

3.1.1 模型分类.................................................................................................. - 8 -

3.1.2 模型选择.................................................................................................. - 9 -

3.2 模型训练...................................................................................................... - 10 -

3.2.1 模型训练配置........................................................................................ - 10 -

3.2.2 训练过程................................................................................................ - 10 -

3.3 模型评估...................................................................................................... - 12 -

3.3.1 损失率和准确率.................................................................................... - 12 -

3.3.2 混淆矩阵................................................................................................ - 13 -

3.3.3 分类报告................................................................................................ - 15 -

第4章 系统运行效果........................................................................................... - 16 -

4.1 模型预测效果.............................................................................................. - 16 -

4.2 UI界面效果.................................................................................................. - 16 -

第5章 总结........................................................................................................... - 18 -

参考文献................................................................................................................. - 19 -

  1. 引言
  1. 项目背景

随着互联网技术的迅猛发展,数字图像和视频数据量呈现出爆炸式增长,构建了海量的多媒体资源库,其中,猫和狗这类常见宠物的图像因其广泛的公众兴趣和社会媒体上的高频分享而占据了显著比例。面对如此庞大且不断增长的数据集,如何实现高效、准确的图像识别,已经成为图像处理与计算机视觉领域面临的一项重要挑战。传统方法依赖于手工设计的特征提取算法,这种方法不仅计算成本高、效率低,而且在处理复杂背景、多变光照条件以及视角变化时,其鲁棒性和准确性均显不足。

近年来,深度学习技术的快速发展,尤其是卷积神经网络(Convolutional Neural Networks, CNN)在图像识别领域的突破性进展,极大地推动了该领域的进步。CNN凭借其多层次的结构,能够自动从原始图像数据中学习到抽象和深层次的特征表示,无需人工干预即可完成高效的特征提取和模式识别,这不仅提升了图像分类的准确性,还增强了模型对各种环境条件的适应能力。基于此,本项目选择采用CNN技术来开发一个高性能的猫狗图像识别系统,旨在克服传统方法的局限性,充分利用深度学习技术的优势,探索其在实际应用场景中的潜力和价值。

具体而言,本研究将利用CNN的强大特征学习能力,针对猫狗图像的特点进行优化,以提高模型的泛化能力和分类精度。通过结合先进的数据增强技术和大规模标注数据集,构建一个既能在复杂场景下保持稳定性能,又能满足实时性要求的图像识别系统,从而为用户提供更加智能和便捷的服务。此外,该项目还将探讨如何进一步提升模型的解释性和透明度,以促进深度学习技术在更多领域的应用和发展。

  1. 项目计划
  1. 研究深度学习技术在图像分类中的应用

本研究聚焦于卷积神经网络(Convolutional Neural Networks, CNN)在大规模图像数据集处理中的应用,特别针对猫狗图像分类任务探讨其效能和适用性。CNN作为一种深度学习架构,能够自动从图像中提取多层次的特征表示,无需人工设计复杂的特征工程,从而显著提高了图像分类的准确性和效率。通过利用CNN的强大特征学习能力,本项目旨在实现对复杂图像数据的有效处理,尤其是在面对大规模、高维度的数据集时,确保模型具备出色的分类性能。

  1. 提升模型的泛化性能

为了增强模型的稳定性和泛化能力,降低过拟合风险,本研究实施了多样化的图像增强技术。这些技术包括但不限于随机旋转、水平翻转、裁剪以及标准化等操作,旨在增加训练数据的多样性,使模型能够在不同条件下保持稳定的性能。通过引入这些增强手段,模型不仅能够在训练集上取得优异的表现,还能在未见过的新数据上维持较高的准确性,确保其在实际应用中的可靠性。

  1. 模型的验证与评估

本研究采用了详尽的数据分析和可视化手段来深入考察模型的训练效果和性能指标。具体而言,通过绘制损失函数曲线(Loss Curve)和准确率曲线(Accuracy Curve),可以直观地展示模型的学习动态和收敛情况。此外,还计算并打印出详细的分类报告,包括精确度(Precision)、召回率(Recall)、F1分数(F1-Score)等关键指标,以全面评估模型的性能。这些方法有助于确保模型具备高度的可靠性和稳定性,为后续的应用提供了坚实的基础。

  1. 创建易于使用的交互平台

为了提升用户体验并促进系统的实际应用,本项目采用PyQt5框架搭建了一个图形用户界面(Graphical User Interface, GUI)。该界面允许用户轻松上传图片,并即时获取识别结果,同时展示预测的概率值,提供直观的操作体验。GUI的设计不仅简化了用户的交互过程,还增强了系统的实用性和便捷性。通过这一平台,用户可以方便地测试和验证模型的分类能力,进一步促进了深度学习技术在图像识别领域的普及和发展。

  1. 技术支持
  1. 深度学习框架

PyTorch:用于构建和训练CNN模型。PyTorch提供了灵活的张量计算和动态计算图,便于快速开发和调试深度学习模型。

  1. 数据处理

PIL (Python Imaging Library):用于图像的加载和预处理。

TorchVision:提供了常用的图像变换操作,如缩放、裁剪、归一化等,方便数据预处理。

NumPy:用于数值计算和数据处理。

  1. 用户界面

PyQt5:用于开发图形用户界面。PyQt5是一个强大的跨平台GUI库,提供了丰富的控件和布局管理工具,使开发者能够快速构建用户友好的界面。

QImage 和 QPixmap:用于图像的显示和处理。

QFileDialog:用于文件选择对话框,方便用户加载图像文件。

  1. 辅助工具

tqdm:用于显示训练进度条,提高用户体验。

Matplotlib 和 Seaborn:用于绘制损失和准确率曲线、混淆矩阵等图表,方便性能评估。

Pandas:用于数据处理和存储训练记录。

  1. 设备配置

CPU/GPU:支持在CPU和GPU上进行模型训练和推理,提高计算效率。

  1. 数据分析
  1. 数据集来源

本项目采用的Cats vs. Dogs数据集来源于Kaggle平台,这是一个由Google 子公司Kaggle Inc.运营的数据科学竞赛平台。Kaggle提供了丰富多样的数据集和竞赛项目,旨在促进研究人员和开发者在机器学习和数据科学领域的创新与实践。

Cats vs. Dogs数据集是图像分类任务中的经典基准数据集,广泛应用于二分类问题的研究。该数据集包含25000张标注好的猫和狗的图像,每类各有12500张。这些图像源自互联网,经过严格的筛选和标注流程,确保了数据的质量、多样性和代表性。图像的分辨率和拍摄条件各异,涵盖了不同的背景、光照条件和视角,从而增加了数据集的复杂性和挑战性。

Catsvs.Dogs数据集的主要应用场景是图像识别分类任务,其丰富的图像样本和明确的二分类标签使其成为验证模型泛化能力、鲁棒性和准确性的理想选择。使用该数据集可以测试各种深度学习模型(如卷积神经网络),并根据处理复杂图像数据时的表现,优化模型结构和训练策略。

  1. 数据集分配

本项目所使用的数据集图像均采用了JPEG格式,并且图像的分辨率存在一定的差异,大多数图像的尺寸范围在100x100至500x500像素之间,这为图像预处理阶段的标准化工作提出了要求。数据集中的图像采集自广泛多样的环境和角度,不仅囊括了室内和室外的不同场景,还包括了在各种光照条件下拍摄的图像,以及多种不同品种的猫和狗,这大大提升了数据集的多样性和代表性。值得注意的是,图像背景的复杂性也是一个不容忽视的特点,例如草地、地板、家具等多种背景元素的存在,不仅增加了图像的真实感,同时也为图像分类任务带来了额外的挑战,要求模型具有较强的背景干扰抵抗能力和更高的识别精度。

在项目实施过程中,数据集按照8:2的比例划分为训练集和测试集。训练集样本包括10000张猫的图像和10000张狗的图像,测试集样本包括2500张猫的图像和2500张狗的图像。如图2.1、图2.2和图2.3所示。

图 2.1  数据集分布

图 2.2  训练集部分图片展示

图 2.3  测试集部分图片展示

  1. 数据预处理

为了确保模型能够从数据中学习到有效的特征,并提高其泛化能力,本研究对训练集和测试集进行了详细的预处理。

  1. 数据集路径及标签

明确指定./Dataset/train 和./Dataset/test为训练集和测试集的文件路径,通过读取指定路径下的文件夹名称来获取训练集和测试集的类别标签。具体而言,训练集和测试集的每个类别(如“猫”和“狗”)分别存储在独立的子文件夹中,文件夹名称即代表该类别的标签。

为了确保标签的一致性和准确性,程序会检查训练集和测试集的标签是否匹配。如果两者标签相同,则将它们合并为一个统一的标签集合 animal_labels,用于后续的数据加载、预处理和模型训练;如果发现标签不一致的情况,系统将提示错误并要求用户进行修正。一旦确认标签一致,animal_labels 将作为统一的类别标签集合,用于指导后续的数据加载过程。

  1. # 获取训练集和测试集路径
  2. train_path = './Dataset/train'
  3. test_path = './Dataset/test'
  4. 获取训练集和测试集的标签
  5. train_labels = sorted(os.listdir(train_path))
  6. test_labels = sorted(os.listdir(test_path))
  7. if train_labels == test_labels:
  8.     animal_labels = train_labels = test_labels
  9. print("animal_labels: ", animal_labels)
  1. 数据增强

为了提高模型的泛化能力,防止过拟合,本研究对训练集进行了数据增强处理,具体措施包括随机旋转、随机水平翻转、随机裁剪等操作,这些方法能够增加训练数据的多样性,帮助模型更好地学习图像的特征。同时,对所有图像进行了归一化处理,确保输入模型的图像数据具有相似的分布,有助于加速模型的收敛速度。

  1. train_transform = transforms.Compose([
  2.     transforms.RandomRotation(10),
  3.     transforms.RandomHorizontalFlip(),
  4.     transforms.RandomResizedCrop(148, scale=(0.81.0)),
  5.     transforms.ToTensor(),
  6.     transforms.Normalize(mean=[0.40.40.4], std=[0.20.20.2])
  7. ])

对于测试集,本研究进行了必要的预处理,如调整图像大小、转换为Tensor格式和归一化,而没有进行任何数据增强操作,以确保测试数据的真实性。

  1. test_transform = transforms.Compose([
  2.     transforms.Resize((148148)),
  3.     transforms.ToTensor(),
  4.     transforms.Normalize(mean=[0.40.40.4], std=[0.20.20.2])
  5. ])
  1. 加载数据集

在加载数据集部分,本研究采用 ImageFolder 类加载训练集和测试集,并应用了先前定义的图像变换。随后,利用 DataLoader 将数据集转换为可迭代对象,设置适当的批处理大小(batch size)和是否打乱数据顺序(shuffle),以优化模型训练过程。

  1. 加载数据集
  2. train_dataset = ImageFolder(train_path, transform=train_transform)
  3. test_dataset = ImageFolder(test_path, transform=test_transform)
  4. batch_size = 64
  5. train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
  6. test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)

  1. 模型训练与测试
  1. 模型构建
  1. 模型分类

在深度学习领域,多种经典的AI模型各自适用于特定的应用场景,并展现出独特的性能优势。以下是几种常用的AI模型及其详细描述:

  1. 卷积神经网络(Convolutional Neural Networks, CNN)

应用场景:广泛应用于图像识别、目标检测、语义分割等领域。

特点:CNN通过卷积层提取图像的局部特征,利用池化层减少特征图的维度,最终通过全连接层进行分类。这种结构特别适合处理具有空间结构的数据,如图像和视频。

经典模型:LeNet-5、AlexNet、VGG、ResNet、Inception 等。

  1. 循环神经网络(Recurrent Neural Networks, RNN)

应用场景:主要用于自然语言处理、语音识别、时间序列预测等任务。

特点:RNN具有记忆功能,能够处理序列数据,适用于需要考虑时间依赖性的任务。其变体如长短期记忆网络(LSTM)和门控循环单元(GRU)进一步提升了对长序列数据的处理能力。

变体:长短期记忆网络(LSTM)、门控循环单元(GRU)等。

  1. Transformer

应用场景:广泛应用于自然语言处理、机器翻译、文本生成等领域。

特点:Transformer通过自注意力机制(Self-Attention)捕捉长距离依赖关系,能够在处理大规模文本数据时表现出色。其并行化的架构也显著提高了训练效率。

经典模型:BERT、GPT 等。

  1. 生成对抗网络(Generative Adversarial Networks, GAN)

应用场景:常用于图像生成、风格迁移、超分辨率等创意性任务。

特点:GAN由生成器(Generator)和判别器(Discriminator)两部分组成,通过对抗训练生成逼真的数据。生成器负责生成新的样本,而判别器则评估这些样本的真实性。

变体:DCGAN、CycleGAN、StyleGAN 等。

  1. 支持向量机(Support Vector Machine, SVM)

应用场景:适用于分类和回归任务。

特点:SVM通过找到最优超平面将数据分为不同的类别,尤其适用于小样本数据集。其核心思想是最大化不同类别之间的间隔,从而提高模型的泛化能力。

优点:计算效率高,泛化能力强,适用于高维空间中的数据分类问题。

综上所述,这些经典AI模型在各自的领域内展现了卓越的性能,为解决复杂的数据分析和模式识别问题提供了强有力的工具。选择合适的模型取决于具体的应用场景和数据特性,合理利用这些模型可以显著提升任务的准确性和效率。

  1. 系统运行效果
  1. 模型预测效果

分别从训练数据集和测试数据集中随机抽取10张照片进行预测,将原始标签和预测标签显示在照片上。若预测正确,则字体颜色为绿色,否则为红色。如图4.1和图4.2所示。

图 4.1  测试集部分图片预测结果(第一组)

图 4.2  测试集部分图片预测结果(第二组)

随机抽取两组共20张图片进行预测,预测均正确,可知模型在识别“猫”和“狗”类别时具有较高的准确性和稳定性。

  1. UI界面效果

本研究使用PyQt5库构建图形用户界面(GUI),实现图像加载和动物预测功能。界面布局包括显示图像的标签、预测结果的标签和加载图像的按钮。

用户可以通过“图像载入”按钮从文件夹中选择图像,点击“猫狗识别”按钮后程序会将图像预处理后输入到模型中,加载模型时初始化模型并加载保存的权重,模型进入评估模式,获取预测结果并在界面上显示。

 UI界面进行预测示例如图4.3和图4.4所示。

图 4.3   UI界面进行预测示例图(猫)

图 4.4  UI界面进行预测示例图(狗)

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值