基于深度学习的交通车流量预测项目(代码+数据集+lw)

!!! 有需要的小伙伴可以通过文章末尾名片咨询我哦!!!

 💕💕作者:优创学社
💕💕个人简介:本人在读博士研究生,拥有多年程序开发经验,辅导过上万人毕业设计,支持各类专业;如果需要论文、毕设辅导,程序定制可以联系作者
💕💕各类成品java系统 。javaweb,ssh,ssm,springboot等等项目框架,源码丰富,欢迎咨询交流。学习资料、程序开发、技术解答、代码讲解、源码部署,需要请看文末联系方式。

摘要

本次研究主要进行的是针对交通流数据的时间序列预测研究。交通流量影响着人们的日常出行生活,有效的预测交通流量有助于帮助人们合理的安排日常的出行(如早晚高峰、节假日出行等)。现有的针对交通流数据的时间序列预测主要是采用基于序列的卷积神经网络和MLP网络展开。在本文中,我们首先调研了交通流数据的时间序列预测的国内外现有的研究现状。接着我们介绍了本次研究使用的数据集,并且详细的说明了数据集的预处理工作。针对本次研究的算法框架,我们将最核心的部分作为一个可扩展的插件进行使用,我们将框架中对应的部分设计成一个黑盒模型,针对当前主流的交通流数据的时间序列预测模型,选择出五种不同的模型用来填充黑盒模型,他们分别是:LSTM模型、堆叠LSTM模型、带有周末节假日信息堆叠LSTM模型、CNN+LSTM+GRU模型以及堆叠MLP模型。在算法的实验阶段,就设计的五种预测模块算法进行了对比实验,实验结果说明了堆叠MLP模块是在当前数据集下预测能力最强的算法。紧接着为了选择出最佳的堆叠层数,我们进行了控制变量的相关实验,用来确定在堆叠LSTM和堆叠MLP中的最佳层数。除此以外,我们还针对dropout这一超参进行实验选择出了最佳的参数值。最后我们对所有的实验结果进行可视化展示,用来清晰的呈现实验的效果。

关键词:时间序列预测;交通流;LSTM;堆叠层数;黑盒模型

Abstract

This study mainly conducts time series prediction research on traffic flow data. Traffic flow affects people's daily travel life. Effective prediction of traffic flow can help people arrange their daily travel reasonably (such as morning and evening peak hours, holiday travel, etc.). Existing time series predictions for traffic flow data mainly use sequence-based convolutional neural networks and MLP networks. In this paper, we first survey the existing research status at home and abroad on time series prediction of traffic flow data. Then we introduced the data set used in this study and explained the preprocessing work of the data set in detail. For the algorithm framework of this study, we use the core part as an extensible plug-in. We design the corresponding part of the framework as a black box model, aiming at the time series prediction model of the current mainstream traffic flow data. Five different models were selected to fill the black box model. They are: LSTM model, stacked LSTM model, stacked LSTM model with weekend and holiday information, CNN+LSTM+GRU model and stacked MLP model. In the experimental stage of the algorithm, comparative experiments were conducted on the five designed prediction module algorithms. The experimental results showed that the stacked MLP module is the algorithm with the strongest prediction ability under the current data set. Next, in order to select the optimal number of stacked layers, we conducted relevant experiments with controlled variables to determine the optimal number of layers in stacked LSTM and stacked MLP. In addition, we also conducted experiments on the dropout super parameter to select the best parameter value. Finally, we visually display all experimental results to clearly present the experimental results.

Keywords: Time series prediction; traffic flow; LSTM; number of stacking layers; black box model

 

目录

摘要... I

Abstract II

第一章 绪论... 1

1.1研究背景与意义... 1

1.2研究贡献及创新点... 1

1.3行文安排... 2

1.4本章小结... 2

第二章 国内外研究现状... 3

2.1时间序列预测... 3

2.1.1 国内研究现状... 3

2.1.2 国外研究现状... 4

2.2交通流预测... 4

2.2.1 国内研究现状... 4

2.2.2 国外研究现状... 5

2.3本章小结... 6

第三章 算法设计... 7

3.1数据集预处理... 7

3.1.1 数据集介绍... 7

3.1.2 数据集划分... 7

3.2模型设计... 8

3.2.1 问题定义... 8

3.2.2 总体框架... 9

3.2.3 LSTM模块... 10

3.2.4 堆叠LSTM模块... 11

3.2.5 融入周末节假日的堆叠LSTM模块... 13

3.2.6 CNN+LSTM+GRU模块... 14

3.2.7 MLP模块... 17

3.2.8 全连接模块与损失函数... 18

3.3本章小结... 20

第四章 算法实验... 21

4.1超参数设置... 21

4.2评价指标介绍... 21

4.3基础性能对比... 21

4.3控制变量研究... 22

4.3.1 堆叠层数对LSTM网络的影响... 22

4.3.2 堆叠层数对MLP网络的影响... 23

4.3.3 dropout对预测模块的影响... 24

4.4可视化结果展示... 24

4.5本章小结... 26

第五章 总结与展望... 27

参考文献... 28

第一章 绪论

1.1研究背景与意义

时间序列预测在各个领域都扮演着重要角色,其中包括金融、天气预报和传感器数据分析等。时间序列数据的分析和预测对于提取有意义的模式、理解时间序列的基本动态以及预测未来的趋势至关重要。在金融领域,时间序列预测被广泛应用于股票市场走势的预测、货币汇率的波动预测以及投资组合管理等方面。在天气预报领域,时间序列预测被用来预测未来几天的气温、降雨量和风向等气象变量,为农业生产、交通运输和城市规划提供重要参考。在传感器数据分析领域,时间序列预测可用于分析环境监测数据、工业生产数据和健康监测数据等,帮助人们及时发现异常情况并采取相应措施。

在众多时间序列预测的应用领域中,交通流预测尤为引人关注。随着城市化进程的加速和人口规模的增长,现代城市面临着巨大的交通和可持续性挑战。交通拥堵不仅影响了人们的出行效率和体验,也增加了交通事故的发生率,对城市的经济发展和社会稳定产生了负面影响。在这样的背景下,智能交通系统(ITS)作为一种解决方案备受瞩目。

交通流预测作为ITS的核心技术之一,旨在根据历史交通数据和道路上的传感器观测,预测未来的交通状态,例如车流量、车速、拥堵情况等。这种预测能力对于城市的公共安全、拥堵管理和导航至关重要。通过准确预测交通流量,城市交通管理部门可以更好地规划交通流向、优化交通信号控制、改善道路状况,从而提高城市交通运行的效率和可靠性。

因此,设计有效的交通流预测算法对于缓解城市交通拥堵、优化城市交通资源分配、改善居民出行体验具有重要意义。通过合理的交通流预测,可以帮助城市规划者和交通管理者更好地制定城市交通政策,提高城市交通系统的智能化水平,推动城市进一步的现代化发展。交通流预测在智能交通系统中具有重要地位,其应用将促进城市交通管理的现代化和智能化,有助于解决城市交通问题,改善城市居民的出行体验,推动城市的可持续发展。开展针对交通流预测的研究和算法设计对于提升城市交通系统的运行效率和服务质量具有重要意义。

1.2研究贡献及创新点

在本次研究中,我们选取了一组公开的高速公路传感器监控数据集作为研究对象,旨在利用现代预测算法对交通流量进行准确预测。这些数据集采集了来自各个传感器的车辆流量、车速、道路状况等信息,覆盖了不同时间段和交通场景下的数据。针对这些数据集,我们考虑采用当前主流的预测算法,并将整体的算法框架进行模块化设计,以实现对不同算法的灵活替换和比较。

模块化设计的好处在于,我们可以将预测模块进行黑盒处理,即将其抽象为一个独立的模块,便于后续的算法替换和比较。当介绍每种算法时,只需将相应算法模型替换到黑盒模块中,从而实现整体框架的连贯性和可复用性。这样的设计使得我们能够更加灵活地对不同算法进行测试和评估,从而找到最适合交通流量预测的算法。

在本文中,我们选择了五种常见的预测算法作为预测模块的候选算法。这些算法包括:长短期记忆网络模型(LSTM)、堆叠多个LSTM的网络模型、在数据集中增加周末节假日信息的LSTM模型、融合卷积神经网络(CNN)、LSTM网络与门控循环单元(GRU)的模型以及多层感知机(MLP)模型。每种算法都具有其特定的优势和适用场景,我们将分别介绍它们的基本原理和在交通流领域的应用方式。

在实验部分,我们将对比每种模型在相同实验参数下的预测效果,以确定最适合交通流量预测的算法。此外,我们还设计了针对不同模型和超参数的对比实验,以探索不同因素对预测结果的影响。通过这些丰富多样的实验设计,我们旨在全面评估各种算法在交通流量预测任务中的性能,并为未来的交通流预测研究提供参考和借鉴。

本文的贡献与创新点主要体现在以下几个方面:

  1. 首先,我们对近年来交通流预测领域的研究现状进行了调研,总结了常见的预测模型框架。
  2. 我们设计了一个可作为插件的黑盒模型,以便于灵活替换不同算法并进行对比实验。
  3. 我们设计了丰富而多样的实验,从多个角度评估了各种算法在交通流量预测中的表现。

1.3行文安排

本文一共会分为五章内容进行,具体的论文行文安排如下:

第一章:绪论。在本章中主要负责介绍本次研究的研究背景以及研究意义。紧接着介绍本次论文中的研究内容以及主要的研究点和论文贡献。最后对本文的行文安排进行简单的介绍。

第二章:国内外研究现状。在本章中主要分为两个大的子章节,将会分别介绍时间序列预测的国内外研究现状以及交通流预测的国内外研究现状。

第三章:算法设计。在本章中首先会对本次算法涉及到的数据集做详细的介绍,在本部分的内容中,会介绍数据集的来源以及如何对数据集信息数据预处理的。接着介绍算法的框架,详细说明了为什么预测算法可以作为黑盒部分的插件使用。随后分别介绍了五种不同的预测算法。

第四章:算法实验。在本章中首先会介绍在实验过程中设置的超参数以及用于实验验证部分的评价指标等。接着会展示并分析五种不同的预测算法进行对比并进行详细分析的结果。最后针对每一种算法的不同超参数,我们 会设置不同的对照试验,用来确定最佳的超参数值。

第五章:总结与展望。在本章中首先会对整体的上述内容进行详细的总结,并且会指出论文中存在的不足之处,为后面的进一步研究指出方向。

1.4本章小结

本章首先介绍了本次研究涉及到的研究背景以及研究意义,指出了本篇工作的具体价值在哪里。接着简单的介绍了本篇论文中使用到的方法,说明了本篇论文的主要创新与贡献点在哪里。最后就本文的后续行文安排做了简单的介绍。

第二章 国内外研究现状

在本章中主要负责介绍时间序列预测领域最新的国内外研究现状。不仅如此,由于使用的数据集涉及到交通流预测,本章还会介绍在交通流预测领域最新的国内外研究现状。

2.1时间序列预测

2.1.1 国内研究现状

在时间序列预测领域,国内拥有大量优秀的学者进行着持续的研究。

范艺扬[1]等提出了基于频域的周期项-趋势项分解的方法,降低了分解过程的时间复杂度;其次在利用周期项-趋势项分解提取序列趋势性特征的基础上,利用基于Gabor变换进行频域特征提取的Transformer网络捕捉周期性的依赖,提高了预测的稳定性和鲁棒性。

任晟岐[2]等通过对遗传算法和Informer模型进行改进,并融合GRU网络,提出了GGInformer模型,不仅可以有效提取多维时间序列的关键特征,而且较好地解决了长程依赖问题。

葛佳昊[3]等提出了基于前向差分、改进小波包去噪和外因输入的非线性自回归网络的非平稳含噪混沌时间序列在线组合预测方法;在滚动时域框架下,采用前向差分平稳窗口内时间序列数据,改进小波包去噪阈值函数改善数据去噪效果,最后通过串并行闭环NARX神经网络对平稳去噪的混沌时间序列进行训练和测试。

曾渝[4]等将原始协变量序列和预测变量序列分解为各自的趋势项和周期项,从而实现独立的预测;对于周期项,引入多头门控膨胀卷积网络的编码器,以提取各自的周期信息;在解码器阶段,使用交叉注意力机制进行通道信息的交互融合,将预测变量的周期信息采样对齐后通过时间注意力与通道融合信息进行周期预测;对于趋势项,采用自回归方式进行趋势预测,最终通过与周期预测结果相加得到最终的预测序列。

陈海燕[5]等通过时间序列分解将多变量时间序列分解为季节项和趋势项;对季节项,设计了一种频域注意力机制,在频域上计算多变量时间序列变量之间的相关函数并通过激活函数得到各个变量的权重,以权重反映各个变量的重要性,从而降低冗余变量对模型预测性能的影响;将季节项在时间方向以相同比例多次分割,通过多层感知机对分割后季节项的时间段和趋势项分别进行特征提取,来获取季节项的多尺度特征,增强模型对时间序列的特征提取能力。

赵龙港[6]等提出了通道融合和序列平稳化模型,模型结合了通道独立与通道依赖的训练策略,基于线性结构发掘序列单个通道的相关性,并使用由傅里叶运算启发的卷积结构来自适应地融合不同的通道;同时,通过堆叠序列通道融合-分解模块,进一步提高模型的预测性能

鞠巍[7]等以四元数代替实数进行网络参数传播,通过四元数内部结构的依赖性,捕获多维时间序列特征之间的内部关系,使得多维时间序列特征中固有的结构信息得到很好的保存。

屈峰[8]提出一种短期预测风速变化趋势的方法,首先使用小波分析技术对风速数据进行分析,研究各频域数据变化趋势,然后使用长短时记忆网络(LSTM)对低频区域数据进行预测,使用卡尔曼滤波技术对高频区域数据进行预测,最后对各频域预测数据进行重构,实现对风速数据短期预测。

黄开远[9]等提出了一种基于注意力机制并融合时间卷积网络与长短期记忆网络的数据增强网络,通过在时间序列过程生成对抗网络中加入自注意力机制来解决其动态信息丢失的问题;针对生成器的输入一般为随机向量,采用时间卷积结构与自注意力机制融合,获得更好的数据生成效果。

管业鹏[10]等提出了一种基于时间注意力机制双向长短期记忆网络的时间序列预测方法,采用改进的正向和反向传播机制提取时序信息并通过自适应权重分配策略推理未来的时序信息;设计了一个改进的双向长短期记忆网络,通过结和长短期记忆网络结合来提取深度时间序列特征,挖掘上下文的时序依赖关系。

范黎林[11]等提出一种基于张量的轻型梯度提升机模型,通过张量分解,重构原始需求数据,修正序列中的异常需求值,并利用轻型梯度提升机对多组序列进行联合预测;然后,构建一种新的线性衰减修正模型,将修正因子引入线性衰减指数平滑方法,对每条序列分别预测需求量和间隔区间。

2.1.2 国外研究现状

在时间序列预测领域,国外同样拥有大量优秀的学者进行着持续且先进的研究。

Liu[12]等提出了一种有效的方法来增加序列的平稳性,并重新构建内部机制,以重新整合非平稳性信息,从而同时提高数据的可预测性和模型的预测能力。

Yi[13]等研究了频域MLP的学习模式,并发现它们具有两个固有特性, 全局视角:频谱使MLP拥有信号的完整视图,更容易学习全局依赖关系;能量压缩:频域MLP聚焦于频率成分的较小关键部分,具有紧凑的信号能量。

Wu[14]等提出了Autoformer,通过将序列分解块嵌入为内部运算器,可以逐步从中间预测中聚合长期趋势部分;设计了一种高效的自相关性机制,用于在序列级别进行依赖关系发现和信息聚合。

Wang[15]等引入了一个自编码变分推断方案,其中结合了预测损失和重构损失,通过提取多变量时间序列的稳健和内在的非平稳表示,从而使其在预测任务中优于其他模型。

Ma[16]等通过结合Unet和Mixer,U-Mixer有效地分别捕捉不同块和通道之间的局部时间依赖关系,以避免通道间分布变化的影响,并合并低级和高级特征以获取全面的数据表示。

Zhou[17]等提出了一种带有频率低秩逼近和专家混合分解的注意力机制,以控制分布偏移,所提出的频率增强结构解耦了输入序列长度和注意力矩阵维度,从而导致了线性复杂度。

Wu[18]等将复杂的时间变化分解为多个周期内和周期间的变化,将时间变化的分析扩展到二维空间,通过将一维时间序列转换为基于多个周期的一组二维张量;通过将周期内和周期间的变化分别嵌入到二维张量的列和行中,使得二维变化可以被二维卷积核轻松建模。

Nie[19]等引入了两个关键组成部分:补丁和通道独立结构,能够捕获局部语义信息,并从更长的回顾窗口中获益。

Wang[20]等提出了TimeMixer作为一个完全基于MLP的架构,其中包括过去可分解混合(PDM)和未来多预测器混合(FMM)模块,以充分利用分解的多尺度序列在过去提取和未来预测阶段的优势: PDM将分解应用于多尺度序列,并将分解的季节性和趋势组分在细到粗和粗到细的方向上分别混合,从而逐步聚合微观季节性和宏观趋势信息;FMM进一步集成了多个预测器,利用了多尺度观测中的互补预测能力。

2.2交通流预测

2.2.1 国内研究现状

与时间序列预测一致,在交通流预测领域,国内拥有大量优秀的学者进行着持续的研究。

何婷[21]等提出了新的利用时空位置注意力的图神经网络,该图神经网络中包含有位置关注机制,由此能够更好地对城市道路网络中交通节点的空间依赖关系进行有效捕捉;利用带有Trendformer的门控递归神经网络来捕捉交通流序列在时间维度上的局部和全局信息,利用改进的网格搜索优化方法对模型的引入参数进行优化,并以较高的时间效率获得全局最优解。

史昕[22]等利用图交谈注意力网络(GTHAT)提取空间数据的非欧几里得结构特征,通过分配动态权重表征不同时间相邻道路交通流的影响程度;其次利用双向增强注意力门控循环单元结构提取时间数据的连续性关联特征,增强每个时刻的时间特征与上下时刻的联系;然后基于软注意力机制融合周周期、日周期和近邻时间三个尺度下的相似交通流趋势,实现对时间周期性特征的充分提取。

庞学丽[23]等利用VMD对历史原始交通流数据进行分解;然后采用佳点集、正弦函数扰动和Tent混沌映射等策略对标准的SSA算法加以改进,增强ISSA算法的寻优能力;最后,将每个分量送入ISSA-LSTM中进行预测,同时将预测结果线性叠加,得到交通流量预测值。

邝先验[24]等通过节点构建空间网络结构图,用自适应图卷积神经网络进行空间特征提取;其次,用门控单元对历史交通流数据进行时间特征提取,并引入时间注意力机制学习不同时间步长对预测的权重,以提高预测准确性。最后,采用全连接层获取交通流预测模型的预测结果。

杨国亮[25]等提出一种结合Transformer的动态扩散卷积门控循环单元预测模型:该模型利用动态扩散卷积网络和门控循环单元对交通流的近期、日周期和周周期三个时间进行时空建模;使用Transformer层获取全局时间依赖关系;将各组件输出进行加权融合,生成预测结果。

曹威[26]等在嵌入层通过位置编码嵌入时间和空间信息,并在注意力机制层融合邻接空间自注意力机制,相似空间自注意力机制,时间自注意力机制,时间-空间自注意力机制等多种自注意力机制挖掘数据中潜在的时空依赖关系,最后在输出层进行预测。

张艳红[27]等在输入编码层对序列数据进行表示学习,并引入了位置信息和时间信息;在时空特征表示学习层,考虑到序列具有不同的周期模式,设计了多个表示学习模块,每个时空表示学习模块,基于一维卷积完成局部时空特征挖掘,然后基于因果卷积实现全局时空特征挖掘;在预测层,引入通道注意力机制提升模型对时空特征利用的有效性。

2.2.2 国外研究现状

在交通流预测领域,国外同样拥有大量优秀的学者进行着持续且先进的研究。

Shi[28]等通过使用残差网络(ResNet)改进了双向长短期记忆网络(Bi-LSTM)的性能,残差网络可以直接连接输入短期和非线性层的输出,然后将改进后的Bi-LSTM与图卷积神经网络(GCN)相结合。

Chen[29]等通过探索区域功能和道路网络的相似性来衡量城市间交通流量的相关性,过滤出从源城市到目标城市转移能力较低的区域;通过计算不同模式之间交通流量的时间相关性,以动态方式选择与目标区域高度相关的源区域。

Kong[30]等引入了一个关键节点识别模块,用于识别关键节点;提出了一种新颖的关键图卷积模块,能够精确捕获围绕关键节点的时空依赖关系;提出了一个并行框架,能够在关键节点和非关键节点上提取时空交通特征。

Ji[31]等提出了一种新颖的时空自监督学习(ST-SSL)交通预测框架,通过辅助自监督学习范式增强交通模式的表示,使其反映空间和时间的异质性。

Ji[32]等提出了一种名为时空微分方程网络(STDEN)的物理引导深度学习模型,将交通流动力学的物理机制转化为深度神经网络框架,通过假设道路网络上的交通流受到潜在的势能场驱动,并将势能场的时空动态过程建模为微分方程网络。

Peng[33]等使用一个预卷积块和视觉变换器来学习局部和全局环境中的空间依赖关系;引入了一个从历史记录的输入到输出预测的跳跃连接,以利用相似的模式来改善预测结果;提出了一种称为随机增强的自监督策略,从大规模交通数据中探索空间-时间表示。

Feng[34]等通过基于张量的常微分方程(ODE)来捕获空间-时间动态,从而构建更深层的网络并同时利用空间-时间特征,通过考虑了语义邻接矩阵,并采用了精心设计的时间扩张卷积结构来捕获长期的时间依赖关系。

2.3本章小结

本章主要负责介绍本篇工作中涉及到的两个研究领域:时间序列预测以及交通流预测。需要说明的是,交通流预测可以包含在时间序列预测当中。我们分别介绍了时间序列预测以及交通流预测领域最新的国内外研究现状。

                                                  图1-8 MLP网络内部结构图

总结与展望

本次研究致力于探索交通流数据的时间序列预测,在日常生活中,交通流量的变化直接影响着人们的出行体验和生活质量。有效地预测交通流量不仅可以帮助人们合理安排出行,还能为交通管理部门提供重要参考,优化交通运输系统,提升城市的交通运行效率。本文将首先回顾交通流数据时间序列预测领域的研究现状,然后介绍使用的数据集和预处理工作,以及本研究采用的算法框架。接着将详细讨论五种不同的预测模型,并在实验阶段进行对比,最后通过实验结果的可视化展示,得出结论和启示。

在当前的交通流数据时间序列预测研究中,主要采用了基于序列的卷积神经网络(CNN)和多层感知机(MLP)等模型。这些模型在处理交通流数据方面具有一定的效果,但也存在一些局限性。因此,本文旨在探索更加有效的预测模型,以提高交通流量预测的准确性和稳定性。

首先,我们对国内外交通流数据时间序列预测领域的研究现状进行了调研,了解了目前主流的研究方向和方法。接着,我们介绍了本次研究所采用的数据集,详细说明了数据集的特点和预处理过程。在构建预测模型的算法框架时,我们设计了一个可扩展的插件模块,将预测模型的核心部分作为黑盒模型,以便于灵活地替换和比较不同的预测算法。

针对本次研究,我们选择了五种不同的预测模型填充到黑盒模型中,分别是:长短期记忆网络(LSTM)、堆叠LSTM模型、融合周末节假日信息的堆叠LSTM模型、CNN+LSTM+GRU模型以及堆叠MLP模型。通过对比实验,我们评估了这些模型在交通流数据预测中的性能,并得出了堆叠MLP模型在当前数据集下表现最佳的结论。

在确定最佳模型后,我们进一步进行了堆叠层数和dropout参数的调优实验,以寻找最佳的超参数配置。这些实验的目的是提高模型的预测准确性和稳定性,以应对不同场景下的交通流量变化。

最后,我们通过可视化展示实验结果,清晰地呈现了各种模型的预测效果和比较结果。通过对实验结果的分析和讨论,我们得出了一些结论和启示,为未来进一步优化交通流数据时间序列预测模型提供了一定的参考和借鉴。

尽管我们验证了不同预测算法的有效性,但值得说明的是,当前针对交通流数据的时间序列预测研究中还有一种主流的研究方向,即基于注意力机制的模型,由于本次的实验条件限制,我们未能实现任何关于注意力机制的模型。在之后的研究中,将注意力机制引入到本次论文的后续研究中使我们接下来研究的重点。

更多项目:

另有10000+份项目源码,项目有java(包含springboot,ssm,jsp等),小程序,python,php,net等语言项目。项目均包含完整前后端源码,可正常运行!

!!! 有需要的小伙伴可以点击下方链接咨询我哦!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

优创学社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值