基于Python爬虫的新浪财经股票的文本挖掘处理系统设计与实现

本文介绍了使用Python爬虫抓取财经新闻数据,通过文本挖掘技术进行数据清洗、分词和特征提取,然后进行股市预测和可视化。重点讨论了中文分词的挑战。实验结果显示了该系统在财经新闻分析中的应用价值和预测准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录
摘 要 I
Abstract II
1.绪论 1
1.1 研究目的和意义 1
1.2 财经新闻综述 1
1.3 关于Python爬虫 2
1.4 文本挖掘概述 2
1.5本系统架构 3
2. 数据榨取与分析 6
2.1 网页源代码分析 6
2.2 数据清洗与过滤并规则化 8
2.3 中文分词 9
2.4 股票板块 12
2.5 评价 14
2.6 股市预测 17
2.7 数据可视化 19
3. 股市行情验证与反馈 21
3.1 对未来七天的预测 21
3.2 七天后的实际情况 24
3.3 分析预测准确度 27
4. 结论 28
4.1 本文本挖掘系统的科学性与实用性总结 28
4.2 本文本挖掘系统得出的结论 28
4.3 不足与展望 29
参考文献: 30
致谢 31
1.3.3 选用Python写爬虫的理由
选用Python写爬虫的原因是:
A.Python可读性强
B.Python容易学
C.Python的爬虫库多

1.4 文本挖掘概述
1.4.1 数据挖掘简介
“数据挖掘(英语:Data mining),又译为资料探勘、数据采矿。它是数据库知识发现(英语:Knowledge-Discovery in Databases,简称:KDD)中的一个步骤。数据挖掘一般是指从大量的数据中通过算法发现、挖掘出隐藏的信息的过程。数据挖掘通常与计算机科学有关,并通过统计、在线分析处理、情报检索、机器学习、专家系统(依靠过去的经验法则)和模式识别等诸多方法来实现上述目标。”[4]

1.4.2 文本挖掘
“文本数据挖掘(Text Mining)是指从文本数据中抽取有价值的信息和知识的计算机处理技术。顾名思义,文本数据挖掘是从文本中进行数据挖掘(Data Mining)。从这个意义上讲,文本数据挖掘是数据挖掘的一个分支。”正如伯克利大学的Sims在其blog上所言:“文本挖掘是通过计算机,自动地从不同的文本源中榨取出那些新的信息出来。把榨取出来的信息与新现象和假设联系起来,以探索出传统研究手段所研究不到的盲点,是文本挖掘的要点所在。”
世界上文本挖掘技术已取得了一定的发展。由于中文区别于英文的语法特殊性,想要挖掘出财经新闻的关键字还是一项比较复杂的工程,难点在于对中文的分词,以及词语性质的分类。
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值