基于深度卷积网络的图像去噪研究

目录
中文内容摘要 2
Abstract 3

第一章 绪论及背景 4
1.1背景 4
1.2 图像去噪的发展状况 4
1.3 深度卷积神经网络 5
1.4 本文章节安排 6

第二章 相关工作 7
2.1图像的噪声模型 7
2.2深度神经网络 7
2.3卷积神经网络 12
2.4 卷积神经网络的训练 13
2.5 卷积神经网络应对图像处理 14

第三章 深度卷积网络模型 16
3.1 卷积神经网络基础 16
3.2 深度卷积网络应用于图像降噪 17
3.3 功能性拓展 21

第四章 实验结果及分析 24
4.1 训练数据 24
4.2 测试数据及对比 24
4.3 测试结果及分析 25

第五章 全文总结及展望 32

参考文献 33
附录 34

在这个信息时代,随着互联网的发展以及人工智能的发展,每个人都在习惯了利用自己的移动终端(手机、平板等)分享自己的生活,分享数字图像是其中一项很重要的内容。然而受到各种不可避免的外界影响,使得图像受到了噪声的干扰。图像的噪声不仅在一定程度上破坏了视觉感受体验,同时也对计算机对图像做进一步处理造成很大干扰。对于目前已经存在的一些去噪效果较好的算法,比如BM3D、LSSC,则又会有运算量较大的的问题。本文基于深度卷积网络,对图像进行去噪处理,并加以批量归一化等方法,以加速网络的训练过程。以高斯噪声为例,该网络对固定噪声水平的噪声以及不固定噪声水平的噪声,均有较好的去噪效果,同时拥有几十倍于BM3D的性能。同时,使用GPU加速将获得更高的性能。非常适合运算性能有限的移动端设备以及运算任务较多的服务器。
第四章 实验结果及分析
4.1 训练数据
在本章节中,讲述运行环境、训练数据、训练结果、性能对比、结果对比、
包括 针对特定噪声 针对随机噪声(需要BM3D使用多重去噪标准进行,打一个表格,进行对比BM3D 对不不同标准 以及使用本文所述的方法,另外附一张对比图表)
训练数据:对于训练数据以及测试数据,首先对2249张图片进行缩放处理,制作256×256的缩略图,并以此作为训练数据以及测试数据的原始数据。
针对固定噪声水平的高斯噪声的去噪,我们对原始数据进行处理,人工添加的高斯噪声,并使用该高斯噪声作为训练的标签。
对于不固定噪声水平的高斯噪声的去噪,同样使用已经生成的2249张图像进行处理。对于2249张图像,手动随机添加的高斯噪声,并使用该噪声作为训练标签,进行训练。在此环节中,将涉及到更多的特征,网络深度有所增加。

x_image = tf.reshape(x, [-1, 256, 256, 1])

W_conv1 = weight_variable([5, 5, 1, 24])  # 第一层卷积层
b_conv1 = bias_variable([24])  # 第一层卷积层的偏置量
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)

W_conv2 = weight_variable([5, 5, 24, 24])  # 第二次卷积层
b_conv2 = bias_variable([24])  # 第二层卷积层的偏置量
h_conv2 = tf.nn.relu(batchnormalize(conv2d(h_conv1, W_conv2) + b_conv2))

W_conv3 = weight_variable([5, 5, 24, 24])  # 第三次卷积层
b_conv3 = bias_variable([24])  # 第二层卷积层的偏置量
h_conv3 = tf.nn.relu(batchnormalize(conv2d(h_conv2, W_conv3) + b_conv3))

W_conv4 = weight_variable([5, 5, 24, 1])  # 第四次卷积层
b_conv4 = bias_variable([1])  # 第二层卷积层的偏置量
h_conv4 = conv2d(h_conv3, W_conv4) + b_conv4
y = tf.reshape(h_conv4, [-1, 65536])

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shejizuopin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值