在计算机科学中,排序是一种基本的操作,它广泛应用于各种数据处理场景。插入排序(Insertion Sort)是一种简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),因而在从后向前扫描过程中,需要反复把已排序元素逐步向后挪位,为最新元素提供插入空间。
一、插入排序算法步骤
- 从第一个元素开始,该元素可以认为已经被排序;
- 取出下一个元素,在已经排序的元素序列中从后向前扫描;
- 如果该元素(已排序)大于新元素,将该元素移到下一位置;
- 重复步骤3,直到找到已排序的元素小于或者等于新元素的位置;
- 将新元素插入到该位置后;
- 重复步骤2~5,直到所有元素均排序完毕。
二、插入排序的时间复杂度与空间复杂度
1. 时间复杂度:
- 最好情况:输入数组已经有序,此时的时间复杂度为O(n)。
- 平均情况:时间复杂度为O(n^2)。
- 最坏情况:输入数组为逆序,此时的时间复杂度为O(n^2)。
2. 空间复杂度:
由于插入排序是原地排序算法,不需要额外的存储空间,因此空间复杂度为O(1)。
三、Java代码实现插入排序
以下是一个插入排序算法的Java代码实现:
public class InsertionSort {
// 插入排序函数
public static void insertionSort(int[] arr) {
int n = arr.length;
for (