题目大意:棋盘上有一个卒,要从A点(0,0)走到B点(n,m),只能向右或向下走。但是棋盘上有一个马的位置,马所在的位置和它能一步跳到的点都是被控制的,卒不能经过这些点。我要计算有多少条路径可以到达B点。
首先,我们需要明确问题的关键点。首先是马的控点,也就是卒不能走的点。其次是路径的统计,这应该是一个动态规划的问题,因为每个点的路径数可能由其左边和上方的点决定,但必须排除被马控制的点。
那首先我们得确定哪些点是马的控制点。马的坐标是给定的,比如马的坐标是(x,y),那么根据马的走法,周围会有八个可能的点会被控制,包括马自己的位置。比如,假设马在(3,3),那么它周围的点可能有(4,5)、(5,4)、(2,1)等等。需要把这些点都标记为不可达的点。
然后,动态规划的思路应该是建立一个二维数组dp,其中dp[i][j]表示从起点到(i,j)点的路径数目。初始化的时候,起点dp[0][0]应该是1,如果起点没有被马控制的话。然后,对于每个点(i,j),如果该点不是被控制的点,那么dp[i][j] = dp[i-1][j] + dp[i][j-1],也就是从左边和上边的点过来。但是如果左边或上边的点被控制,那么相应的路径数就不能加上。
不过,这里需要注意边界情况。比如,当i=0的时候,只能从左边来,也就是j轴的方向。同样,当j=0的时候,只能从上方来,也就是i轴的方向。但是如果起点被马控制的话,整个路径数就是0,因为无法移动。
接下来,我需要考虑如何标记马的控制点。首先,输入给出的是B点的坐标(n,m)和马的坐标(x,y)。比如样例输入是6 6 3 3,也就是B点是(6,6),马在(3,3)。那么马的控制点包括:
- 马自己的位置(3,3)
- 周围的八个点:(x+1,y+2), (x+2,y+1), (x+2,y-1), (x+1,y-2), (x-1,y-2), (x-2,y-1), (x-2,y+1), (x-1,y+2)
这些坐标需要检查是否在棋盘范围内(比如,不能是负数,或者超过n或m的范围)。比如,假设马的坐标是(0,0),那么某些方向可能无法存在,所以需要排除这些点。
然后,遍历所有可能的点,如果点(i,j)是马的控制点,则标记该点为障碍,不能走。
接下来,动态规划的初始化。对于第一行(i=0),如果路径上的某个点被马控制,那么该点及之后的所有点的路径数都为0,因为无法到达。同样的,对于第一列(j=0),也是类似的情况。
比如,在样例输入中,B点是(6,6),所以棋盘的范围是0<=i<=6,0<=j<=6。马的位置是(3,3),控制点包括:
(3,3)
(4,5), (5,4), (5,2), (4,1), (2,1), (1,2), (1,4), (2,5)
需要检查这些点是否在棋盘范围内。比如,对于n=6,m=6来说,最大的坐标是6。所以,例如(4,5)是有效的,而(5,4)也在范围内。比如,假设马的位置是(3,3),那么上述点中的某些可能超出范围吗?比如(4,5)中的x=4<=6,y=5<=6,没问题。而比如(5,4)也有效。其他的点可能比如(3-2,3+1)= (1,4)也有效。所以所有这些点都需要被标记为障碍。
在样例中,路径数为6。那可能意味着,在这些障碍点的情况下,存在6条不同的路径从起点到终点。
那动态规划的递推式应该是,如果当前点不是障碍,那么dp[i][j] = dp[i-1][j] + dp[i][j-1]。如果是障碍,则dp[i][j]=0。
那么,具体的步骤应该是:
1. 输入B点的坐标n, m,以及马的坐标x, y。
注意,题目中的输入是四个正整数,分别表示B点坐标和马的坐标。比如样例输入是6 6 3 3,那么B点是(6,6),马的位置是(3,3)。但根据坐标系的表示,可能需要确认是否起点是(0,0),终点是(n,m)。比如,如果输入是n=6,m=6的话,那么棋盘是0到6的坐标,总共有7行7列?或者是否坐标是1-based?比如题目中的描述可能需要明确坐标的范围。例如,原题中的描述可能应该确认坐标的范围,比如是否允许n和m为0。但根据样例输入,输入是6 6,而马的坐标是3 3,那么可能坐标是0-based的,所以B点坐标是(n,m)等于(6,6)的话,总共有7x7的格子?
需要明确题目中的棋盘坐标是否是0-based,比如起点是(0,0),终点是(n,m)。例如,当n=6,m=6时,棋盘的行数是n+1,列数是m+1。比如,总共有7x7个点。这个时候,当计算路径的时候,每个点只能向右或向下移动一步。
那这时候,动态规划的数组的大小应该是(n+1)行,(m+1)列。比如,当n=6时,i的范围是0到6,共7个点。
接下来,如何标记马的控制点:
马的位置是(x,y),那么其周围的八个可能的点需要计算。例如,马走日的八个方向:
(x+2, y+1)
(x+2, y-1)
(x-2, y+1)
(x-2, y-1)
(x+1, y+2)
(x+1, y-2)
(x-1, y+2)
(x-1, y-2)
再加上马自身的位置(x,y),都是被控制的点。对于每个可能的这些坐标,需要检查是否在棋盘范围内,即是否0<=X<=n,0<=Y<=m。如果超出范围的话,就不需要标记。
例如,假设马的位置是(3,3),n=6,m=6。那么上述所有方向上的坐标是否在范围内?
比如,(3+2,3+1)=(5,4) <=6,有效。同样,(3+1,3+2)=(4,5)也有效。而其他方向比如(3-2,3+1)=(1,4),也有效。所以所有八个点都可能有效。
将这些点都标记为障碍点。
接下来,初始化dp数组。dp[0][0]的值取决于起点是否被马控制。如果起点是障碍点的话,那么无法移动,结果为0。否则,dp[0][0]=1。
然后,处理第一行和第一列:
对于第一行(i=0),每个点只能从左边过来。所以,如果当前位置不是障碍,且左边的点可达,那么当前点的路径数等于左边点的路径数。如果左边点不可达,那么当前点也不可达。
例如,假设i=0,j从0到m。对于每个j,如果j=0时已经处理。当j>=1时,如果当前点不是障碍,并且dp[0][j-1] >0,那么dp[0][j] = dp[0][j-1]。否则,dp[0][j]=0。
同样的,处理第一列(j=0,i>=1):如果当前点不是障碍,并且dp[i-1][0] >0,则dp[i][0] = dp[i-1][0]。否则,0。
然后,对于其他点i>0且j>0的情况,如果当前点不是障碍,那么dp[i][j] = dp[i-1][j] + dp[i][j-1]。如果是障碍的话,dp[i][j]=0。
这样遍历整个棋盘,最终dp[n][m]即为答案。
现在,需要考虑如何实现这个动态规划过程。
首先,创建一个二维数组dp,大小为(n+1)x(m+1)。同时,创建一个二维数组obstacle,同样大小,用来标记是否是障碍点。
然后,初始化障碍数组。遍历马的位置及其八个可能的方向,将范围内的点标记为障碍。
然后,初始化dp数组。首先检查起点是否被标记为障碍,如果是的话直接返回0。
否则,初始化dp[0][0]=1。然后处理第一行和第一列。
然后,遍历其他点。
需要注意,当i=0或者j=0时,处理方式不同。
现在,举个例子,比如样例输入:
输入:6 6 3 3。也就是终点是(6,6),马的位置是(3,3)。
需要标记的障碍点包括:
(3,3)
以及八个方向:
(3+2, 3+1) → (5,4)
(3+2, 3-1) → (5,2)
(3-2,3+1) → (1,4)
(3-2,3-1) → (1,2)
(3+1,3+2) → (4,5)
(3+1,3-2) → (4,1)
(3-1,3+2) → (2,5)
(3-1,3-2) → (2,1)
然后,这些点是否都在0<=x<=6,0<=y<=6范围内?是的,所以共有9个障碍点。
然后,我们需要创建7x7的棋盘,检查每个点是否是障碍。
初始化dp数组。dp[0][0]是否为障碍?如果起点(0,0)不在障碍点中,那么dp[0][0]=1。否则为0。例如,在样例输入中,起点是(0,0),而障碍点是马的周围,所以不会被标记,所以dp[0][0]=1。
处理第一行i=0,j从1到6:
对于每个j,检查当前点是否是障碍。例如,j=0的时候已经处理过了。假设在i=0时,比如在样例输入中,是否有障碍点?比如,障碍点中有没有在第一行(i=0)的点?比如,比如马的某个方向可能导致障碍点在第一行?
比如,假设马的坐标是(0,0),那么障碍点可能包括(0,0), (2,1), (1,2)等等。如果在样例输入中,假设i=0的某个点被标记为障碍,那么后面的点就不能到达。
假设在样例输入中,起点不是障碍,那么处理第一行:
i=0,j=0 → dp[0][0]=1
j=1时,点(0,1)是否被障碍?要看是否在马的控点列表中。假设在样例中,马的控点中没有这个点,所以dp[0][1] = dp[0][0] =1。同样,后面的点如果未被阻挡,都继承左边的值。
同理处理第一列j=0,i从1到6。
然后,其他点按照dp[i][j] = 上边加左边的方式计算。
在样例中,最终的路径数目是6。这说明在存在障碍的情况下,共有6条路径。
现在,需要考虑如何处理障碍点的问题。比如,如何遍历马的八个方向?
可以用一个数组存储八个方向的偏移量。例如:
int dirs[8][2] = {{2,1}, {2,-1}, {-2,1}, {-2,-1}, {1,2}, {1,-2}, {-1,2}, {-1,-2}};
然后,对于马的坐标(x,y),遍历这八个方向,生成可能的点,并判断是否在棋盘范围内。如果在的话,标记为障碍。
此外,马的自身位置(x,y)也要标记为障碍。
这样,可以确保所有被控制的点都被正确标记。
现在,关于动态规划的初始化,当处理第一行的时候,如果某个点被障碍阻挡,那么后面的点都无法到达。比如,第一行i=0,j=3的位置被阻挡,那么j>=3的点都无法到达。
同样的,对于第一列也是如此。
在代码实现中,需要注意数组的索引是否越界。例如,当n和m的值较大时,但题目给出的数据范围是n,m<=20,所以数组的大小最多是21x21,这在内存上是可行的。
另外,由于结果可能很大,比如当n=20,m=20的时候,路径数目可能超过int的范围。例如,假设没有障碍的话,路径数目是组合数C(40,20)=137846528820,这会超过int的范围,因此需要用long long类型来存储dp数组的值。
但是在样例输入中,输出是6,显然在int范围内。但题目中的测试数据是否有可能超过int的范围?所以,应该使用long long类型来避免溢出。
所以,在代码中,dp数组的类型应该是long long。
现在,总结解题步骤:
1. 读取输入n, m, x, y。其中,B点坐标是(n,m),马的位置是(x,y)。
2. 检查坐标是否有效。比如,马的坐标是否在0<=x<=n,0<=y<=m。但题目中给出输入是有效的,所以可能不需要处理。
3. 创建障碍数组,标记所有马的控制点。
4. 创建动态规划数组dp,初始化为0。处理起点,如果起点不是障碍,则dp[0][0]=1。
5. 处理第一行和第一列。
6. 处理其他点,根据动态规划方程计算每个点的路径数目。
7. 输出dp[n][m]的值。
需要注意的问题:
- 数组越界问题:在标记马的控点时,必须确保生成的坐标在0<=i<=n,0<=j<=m范围内。
- 数据类型溢出:必须使用足够大的数据类型,如long long。
- 动态规划的顺序:必须按行或列的顺序处理,确保每个点的左边和上方的点已经被处理过。
现在,编写代码的大纲:
首先,读取输入:
int n, m, x, y;
cin >> n >> m >> x >> y;
然后,创建棋盘的范围是0到n,0到m。
创建一个二维数组obstacle,大小是(n+1)行,(m+1)列。初始化为false。
然后,标记障碍点:
obstacle[x][y] = true;
然后,遍历八个方向:
for 每个方向 in dirs:
int nx = x + dx;
int ny = y + dy;
if nx >=0 && nx <=n && ny >=0 && ny <=m:
obstacle[nx][ny] = true;
然后,初始化dp数组:
long long dp[n+1][m+1];
memset(dp, 0, sizeof(dp));
如果起点(0,0)不是障碍:
if (!obstacle[0][0]) dp[0][0] = 1;
否则,输出0。
处理第一行:
for (int j=1; j<=m; j++) {
if (!obstacle[0][j] && dp[0][j-1] >0) {
dp[0][j] = dp[0][j-1];
} else {
dp[0][j] = 0;
}
}
处理第一列:
for (int i=1; i<=n; i++) {
if (!obstacle[i][0] && dp[i-1][0] >0) {
dp[i][0] = dp[i-1][0];
} else {
dp[i][0] = 0;
}
}
处理其他点:
for (int i=1; i<=n; i++) {
for (int j=1; j<=m; j++) {
if (!obstacle[i][j]) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
} else {
dp[i][j] = 0;
}
}
}
最后输出dp[n][m]。
需要注意的是,当n=0或m=0时,比如当B点就在起点的情况下,比如n=0,m=0。这时如果起点不是障碍,则路径数目是1,否则是0。
另外,在C++中,变长数组(如long long dp[n+1][m+1])可能在编译器支持的情况下工作,但更安全的方式是使用动态分配的数组,或者使用vector。
但是,由于n和m的范围较小(<=20),可以安全地使用二维数组。
例如,在代码中:
const int MAX = 21;
long long dp[MAX][MAX];
bool obstacle[MAX][MAX] = {false};
这样,数组的大小足够容纳最大情况。
所以,正确的代码可能如下:
#include <iostream>
using namespace std;
int main() {
int n, m, x, y;
cin >> n >> m >> x >> y;
const int dirs[8][2] = {{1,2}, {1,-2}, {-1,2}, {-1,-2}, {2,1}, {2,-1}, {-2,1}, {-2,-1}};
bool obstacle[21][21] = {false};
// 标记马的控点
obstacle[x][y] = true;
for (int i=0; i<8; i++) {
int nx = x + dirs[i][0];
int ny = y + dirs[i][1];
if (nx >=0 && nx <=n && ny >=0 && ny <=m) {
obstacle[nx][ny] = true;
}
}
// 初始化dp数组
long long dp[21][21] = {0};
if (!obstacle[0][0]) {
dp[0][0] = 1;
}
// 处理第一行
for (int j=1; j<=m; j++) {
if (!obstacle[0][j] && dp[0][j-1] >0) {
dp[0][j] = dp[0][j-1];
}
}
// 处理第一列
for (int i=1; i<=n; i++) {
if (!obstacle[i][0] && dp[i-1][0] >0) {
dp[i][0] = dp[i-1][0];
}
}
// 处理其他点
for (int i=1; i<=n; i++) {
for (int j=1; j<=m; j++) {
if (!obstacle[i][j]) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
cout << dp[n][m] << endl;
return 0;
}
但是,这里有一个问题:在处理第一行和第一列的时候,代码中的条件是否正确?
例如,处理第一行的时候,每个点是否被障碍阻挡。例如,当处理j=1时,如果当前点被阻挡,那么即使左边的点可达,当前点也不可达,所以应该设置dp[0][j]=0。代码中的条件是正确的,只有当当前点不是障碍且左边可达时,才能设置dp[0][j]的值。否则,dp[0][j]保持0,因为数组被初始化为0。
同样的,处理第一列的时候,只有当当前点不是障碍且上方的点可达时,才能设置dp[i][0]的值。
这样,代码应该是正确的。
现在,测试样例输入6 6 3 3,输出应该是6。
例如,在代码中,当处理到各个点的时候,障碍点被正确标记,路径数被正确计算。
但是,在样例中,为什么输出是6?假设在动态规划过程中,某些路径被障碍阻挡,导致最终只有6条路径。
因此,上述代码应该能正确处理这种情况。
另一个测试情况是,如果起点被马控制,那么输出0。例如,输入0 0 0 0,此时马的控点包括起点,所以输出0。
另外,如果马的控点位于某条必经之路,那么路径数可能为0。例如,当B点是(1,1),马的位置是(0,1),那么控点包括(0,1)、(2,2)(但可能超出范围),其他控点可能包括其他位置。此时,起点是(0,0),必须走到(0,1)或(1,0)。如果(0,1)是障碍,则只能向下走。比如,如果(1,0)未被阻挡,那么路径数目是1。如果(1,0)也被阻挡,那么路径数目是0。
综上,上述代码应该能正确处理所有情况。
再整理后,可得出代码。
AC代码:
#include <iostream>
using namespace std;
int main() {
int n, m, x, y;
cin >> n >> m >> x >> y;
const int dirs[8][2] = {{1, 2}, {1, -2}, {-1, 2}, {-1, -2},
{2, 1}, {2, -1}, {-2, 1}, {-2, -1}};
bool obstacle[21][21] = {false};
obstacle[x][y] = true;
for (int i = 0; i < 8; ++i) {
int nx = x + dirs[i][0];
int ny = y + dirs[i][1];
if (nx >= 0 && nx <= n && ny >= 0 && ny <= m) {
obstacle[nx][ny] = true;
}
}
long long dp[21][21] = {0};
if (!obstacle[0][0]) {
dp[0][0] = 1;
}
for (int j = 1; j <= m; ++j) {
if (!obstacle[0][j]) {
dp[0][j] = dp[0][j-1];
}
}
for (int i = 1; i <= n; ++i) {
if (!obstacle[i][0]) {
dp[i][0] = dp[i-1][0];
}
}
for (int i = 1; i <= n; ++i) {
for (int j = 1; j <= m; ++j) {
if (!obstacle[i][j]) {
dp[i][j] = dp[i-1][j] + dp[i][j-1];
}
}
}
cout << dp[n][m] << endl;
return 0;
}