逻辑回归案例
假设表示
基于上述情况,要使分类器的输出在[0,1]之间,可以采用假设表示的方法。
设hθ(x)=g(θTx)h_θ (x)=g(θ^T x)hθ(x)=g(θTx),
其中g(z)=1(1+e−z)g(z)=\frac{1}{(1+e^{−z} )}g(z)=(1+e−z)1, 称为逻辑函数(Sigmoid function,又称为激活函数,生物学上的S型曲线)
hθ(x)=1(1+e−θTX)h_θ (x)=\frac{1}{(1+e^{−θ^T X} )}hθ(x)=(1+e−θTX)1
其两条渐近线分别为h(x)=0和h(x)=1
在分类条件下,最终的输出结果是:
hθ(x)=P(y=1│x,θ)h_θ (x)=P(y=1│x,θ)hθ(x)=P(y=1│x,θ)
其代表在给定x的条件下 其y=1的概率
P(y=1│x,θ)+P(y=0│x,θ)=1P(y=1│x,θ)+P(y=0│x,θ)=1P(y=1│x,θ)+P(y=0│x,θ)=1
决策边界( Decision boundary)
对假设函数设定阈值h(x)=0.5h(x)=0.5h(x)=0.5,
当h(x)≥0.5h(x)≥0.5h(x)≥0.5 时,输出结果y=1.
根据假设函数的性质,当 x≥0时,x≥0时,x≥0时,h(x)≥0.5
用θTxθ^T xθ