这是一道相当经典的分层图最短路问题,还用到了0-1bfs方法优化dj,记录一下
可以将这张图分为两层看:
-
第一层 —— 站点节点
-
每个原始地铁站 u 对应第一层的一个节点。
-
在这一层里,你表示“我现在还没选任何线路,只是停在站点 u 上”。
-
从这一层出发,连出的边都是“付费换乘”的操作:你要付一次换乘(权重 1)才能进入某条线路。
-
-
第二层 —— 线路节点
-
每条不同颜色 c 的整条地铁线对应第二层的一个节点 C。
-
在这一层里,你表示“我已经在线路 c 上(不管是哪个具体站),正在该线路上自由移动”。
-
从这一层出发,连出的边都是“免费移动”的操作:你可以在同一线路上从线路节点 C出发,以权重 0 的边到达该线路上任意一个相连站点
-
如此建图跑一遍dj就是答案,这道题就这样做完了
然而
构造完这个图后,发现所有边的权重只有 0 或 1,就可以用 0–1 BFS。核心思想:
-
用一个
deque<int> q;
-
初始化
dis[s] = 0
(源站点),把它push_back(s)
。 -
每次从
q.front()
弹出当前节点u
:-
遍历所有边
(u→v, w∈{0,1})
,如果dis[u]+w < dis[v]
,就更新dis[v]
。 -
如果那条边权是 0,就
push_front(v)
(优先探索,保持“当前最短”);
如果是 1,就push_back(v)
。
-
-
直到队列空或者到达终点
t
。
这样每个节点最多进队两次,整趟算法时间 O(N+M),比 Dijkstra 的 O(Mlog N) 要快很多。
#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e6 + 10;
const int mod = 1E9 + 7;
#define pii pair<int, int>
#define lowbit(x) (x & (-x))
void solve()
{
int n, m;
cin >> n >> m;
vector<pii> e[n * 2 + m];
map<int, int> col;
int cnt = n;
for (int i = 0; i < m; i++)
{
int u, v, w;
cin >> u >> v >> w;
if (!col.count(w))
col[w] = ++cnt;
// 表示从u这个节点换线进入地铁线col[w]
e[u].push_back({col[w], 1});
e[v].push_back({col[w], 1});
// 表示从col[w]地铁线在u处下车
e[col[w]].push_back({u, 0});
e[col[w]].push_back({v, 0});
}
int s, t;
cin >> s >> t;
deque<int> q;
vector<int> vis(n * 2 + m, 0), dis(n * 2 + m, 1e9);
dis[s] = 0;
q.push_back(s);
// 入队策略:
// 如果这条边的权重 w 为 0,说明走这条边不增加距离,应该优先处理,就 push_front(v)。
// 如果 w 为 1,说明要在路径中多加 1 步,就放到队列尾部 push_back(v),和普通 BFS 类似。
// 这样一来,队列里始终保持「当前最小可能距离节点」在前面,等价于对 0/1 权重做了一次 “浅度优先” + “最短路” 的合并。
while (!q.empty())
{
int u = q.front();
q.pop_front();
if (vis[u]) // 每个点只需要更新一次
continue;
vis[u] = 1;
for (auto [v, w] : e[u])
{
if (dis[v] > dis[u] + w)
{
dis[v] = dis[u] + w;
if (w)
q.push_back(v);
else
q.push_front(v);
}
}
}
cout << dis[t] << endl;
}
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int t = 1;
cin >> t;
while (t--)
solve();
}
题目关键在于建分层图,这是最短路的一个比较重要的知识点,
分层图常见应用场景
场景 | 分层示例 |
---|---|
最少换乘(本题) | 站点层 ↔ 线路层(线路节点) |
路径长度奇偶 | 拆两层:偶数层/奇数层,跨层表示走过一条边 |
费用/折扣(一次性优惠券) | 拆两层:优惠券未用层/已用层 |
魔法/传送(一次性跳跃) | 类似“一次免跳”问题,拆优惠券那样来建图 |
容量/剩余能量(多余状态的 DP+最短路) | 拆成 E剩余=0…K 层 |
限制次数(最多换乘 k 次) | 拆 (k+1)层,每走一次换乘跨一层 |