Codeforces Round 933 (Div. 3) G. Rudolf and Subway (最短路,2000)

这是一道相当经典的分层图最短路问题,还用到了0-1bfs方法优化dj,记录一下

Problem - G - Codeforces

可以将这张图分为两层看:

  1. 第一层 —— 站点节点

    • 每个原始地铁站 u 对应第一层的一个节点。

    • 在这一层里,你表示“我现在还没选任何线路,只是停在站点 u 上”。

    • 从这一层出发,连出的边都是“付费换乘”的操作:你要付一次换乘(权重 1)才能进入某条线路。

  2. 第二层 —— 线路节点

    • 每条不同颜色 c 的整条地铁线对应第二层的一个节点 C。

    • 在这一层里,你表示“我已经在线路 c 上(不管是哪个具体站),正在该线路上自由移动”。

    • 从这一层出发,连出的边都是“免费移动”的操作:你可以在同一线路上从线路节点 C出发,以权重 0 的边到达该线路上任意一个相连站点

如此建图跑一遍dj就是答案,这道题就这样做完了

然而

构造完这个图后,发现所有边的权重只有 0 或 1,就可以用 0–1 BFS。核心思想:

  1. 用一个 deque<int> q;

  2. 初始化 dis[s] = 0(源站点),把它 push_back(s)

  3. 每次从 q.front() 弹出当前节点 u

    • 遍历所有边 (u→v, w∈{0,1}),如果 dis[u]+w < dis[v],就更新 dis[v]

    • 如果那条边权是 0,就 push_front(v)(优先探索,保持“当前最短”);
      如果是 1,就 push_back(v)

  4. 直到队列空或者到达终点 t

这样每个节点最多进队两次,整趟算法时间 O(N+M),比 Dijkstra 的 O(Mlog⁡ N) 要快很多。

#include <bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e6 + 10;
const int mod = 1E9 + 7;
#define pii pair<int, int>
#define lowbit(x) (x & (-x))
void solve()
{
    int n, m;
    cin >> n >> m;
    vector<pii> e[n * 2 + m];
    map<int, int> col;
    int cnt = n;
    for (int i = 0; i < m; i++)
    {
        int u, v, w;
        cin >> u >> v >> w;
        if (!col.count(w))
            col[w] = ++cnt;
        // 表示从u这个节点换线进入地铁线col[w]
        e[u].push_back({col[w], 1});
        e[v].push_back({col[w], 1});

        // 表示从col[w]地铁线在u处下车
        e[col[w]].push_back({u, 0});
        e[col[w]].push_back({v, 0});
    }
    int s, t;
    cin >> s >> t;
    deque<int> q;
    vector<int> vis(n * 2 + m, 0), dis(n * 2 + m, 1e9);
    dis[s] = 0;
    q.push_back(s);
    // 入队策略:
    // 如果这条边的权重 w 为 0,说明走这条边不增加距离,应该优先处理,就 push_front(v)。
    // 如果 w 为 1,说明要在路径中多加 1 步,就放到队列尾部 push_back(v),和普通 BFS 类似。
    // 这样一来,队列里始终保持「当前最小可能距离节点」在前面,等价于对 0/1 权重做了一次 “浅度优先” + “最短路” 的合并。
    while (!q.empty())
    {
        int u = q.front();
        q.pop_front();
        if (vis[u]) // 每个点只需要更新一次
            continue;
        vis[u] = 1;
        for (auto [v, w] : e[u])
        {
            if (dis[v] > dis[u] + w)
            {
                dis[v] = dis[u] + w;
                if (w)
                    q.push_back(v);
                else
                    q.push_front(v);
            }
        }
    }
    cout << dis[t] << endl;
}
signed main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    int t = 1;
    cin >> t;
    while (t--)
        solve();
}

题目关键在于建分层图,这是最短路的一个比较重要的知识点,

分层图常见应用场景

场景分层示例
最少换乘(本题)站点层 ↔ 线路层(线路节点)
路径长度奇偶拆两层:偶数层/奇数层,跨层表示走过一条边
费用/折扣(一次性优惠券)拆两层:优惠券未用层/已用层
魔法/传送(一次性跳跃)类似“一次免跳”问题,拆优惠券那样来建图
容量/剩余能量(多余状态的 DP+最短路)拆成 E剩余=0…K​ 层
限制次数(最多换乘 k 次)拆 (k+1)层,每走一次换乘跨一层

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值