P2285 [HNOI2004] 打鼹鼠

题目描述

鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿牛编写了一个打鼹鼠的游戏:在一个 n×n 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果 i 时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为 (i,j) 的网格移向 (i−1,j),(i+1,j),(i,j−1),(i,j+1) 四个网格,机器人不能走出整个 n×n 的网格。游戏开始时,你可以自由选定机器人的初始位置。

现在知道在一段时间内,鼹鼠出现的时间和地点,请编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。

输入格式

第一行为 n,m(n≤1000,m≤104),其中 m 表示在这一段时间内出现的鼹鼠的个数,接下来的 m 行中每行有三个数据 time,x,y 表示在游戏开始后 time 个时刻,在第 x 行第 y 个网格里出现了一只鼹鼠。time 按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。

输出格式

仅包含一个正整数,表示被打死鼹鼠的最大数目。

输入输出样例

输入 

2 2	         
1 1 1		
2 2 2

输出 

1

代码

无注释版

#include<bits/stdc++.h>
#define int long long
using namespace std;
int t[10010],x[10010],y[10010],dp[10010];
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);
	cout.tie(0);
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		cin>>t[i]>>x[i]>>y[i];
	}
	for(int i=1;i<=m;i++){
		dp[i]=1;
	}
	for(int i=1;i<=m;i++){
		for(int j=1;j<i;j++){
			if(abs(t[i]-t[j])>=abs(x[i]-x[j])+abs(y[i]-y[j])){
				dp[i]=max(dp[i],dp[j]+1); 
			}
		}
	}
	int ans=INT_MIN;
	for(int i=1;i<=m;i++){
		ans=max(ans,dp[i]);
	}
	cout<<ans<<"\n";
}

有注释版

#include<bits/stdc++.h>  // 引入所有常用标准库
#define int long long    // 将int定义为long long,防止整型溢出

using namespace std;

// 定义数组:t记录每只鼹鼠出现的时间,x和y是出现的坐标,dp是动态规划数组
int t[10010], x[10010], y[10010], dp[10010];

signed main() {
    ios::sync_with_stdio(false);  // 关闭同步提高cin/cout速度
    cin.tie(0);  // 解绑cin和cout,提高效率
    cout.tie(0);

    int n, m;  // n是网格大小(n×n),m是鼹鼠数量
    cin >> n >> m;

    // 读取每只鼹鼠的信息(出现时间和位置)
    for (int i = 1; i <= m; i++) {
        cin >> t[i] >> x[i] >> y[i];
    }

    // 初始化,每只鼹鼠本身都可以成为一个单独的“击杀路径”
    for (int i = 1; i <= m; i++) {
        dp[i] = 1;
    }

    // 动态规划,遍历所有鼹鼠对,判断能否从j击杀再到i
    for (int i = 1; i <= m; i++) {         // 当前考察第i只鼹鼠
        for (int j = 1; j < i; j++) {      // 考察i之前的所有鼹鼠
            // 判断机器人是否有足够的时间从j的位置走到i的位置
            // 条件:时间差 ≥ 曼哈顿距离(机器人移动一格时间为1)
            if (abs(t[i] - t[j]) >= abs(x[i] - x[j]) + abs(y[i] - y[j])) {
                dp[i] = max(dp[i], dp[j] + 1);  // 如果可以击杀i,更新dp[i]
            }
        }
    }

    // 在dp数组中找出最大值,即最多击杀的鼹鼠数
    int ans = INT_MIN;
    for (int i = 1; i <= m; i++) {
        ans = max(ans, dp[i]);
    }

    cout << ans << "\n";  // 输出结果
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值