题目描述
鼹鼠是一种很喜欢挖洞的动物,但每过一定的时间,它还是喜欢把头探出到地面上来透透气的。根据这个特点阿牛编写了一个打鼹鼠的游戏:在一个 n×n 的网格中,在某些时刻鼹鼠会在某一个网格探出头来透透气。你可以控制一个机器人来打鼹鼠,如果 i 时刻鼹鼠在某个网格中出现,而机器人也处于同一网格的话,那么这个鼹鼠就会被机器人打死。而机器人每一时刻只能够移动一格或停留在原地不动。机器人的移动是指从当前所处的网格移向相邻的网格,即从坐标为 (i,j) 的网格移向 (i−1,j),(i+1,j),(i,j−1),(i,j+1) 四个网格,机器人不能走出整个 n×n 的网格。游戏开始时,你可以自由选定机器人的初始位置。
现在知道在一段时间内,鼹鼠出现的时间和地点,请编写一个程序使机器人在这一段时间内打死尽可能多的鼹鼠。
输入格式
第一行为 n,m(n≤1000,m≤104),其中 m 表示在这一段时间内出现的鼹鼠的个数,接下来的 m 行中每行有三个数据 time,x,y 表示在游戏开始后 time 个时刻,在第 x 行第 y 个网格里出现了一只鼹鼠。time 按递增的顺序给出。注意同一时刻可能出现多只鼹鼠,但同一时刻同一地点只可能出现一只鼹鼠。
输出格式
仅包含一个正整数,表示被打死鼹鼠的最大数目。
输入输出样例
输入
2 2
1 1 1
2 2 2
输出
1
代码
无注释版
#include<bits/stdc++.h>
#define int long long
using namespace std;
int t[10010],x[10010],y[10010],dp[10010];
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);
cout.tie(0);
int n,m;
cin>>n>>m;
for(int i=1;i<=m;i++){
cin>>t[i]>>x[i]>>y[i];
}
for(int i=1;i<=m;i++){
dp[i]=1;
}
for(int i=1;i<=m;i++){
for(int j=1;j<i;j++){
if(abs(t[i]-t[j])>=abs(x[i]-x[j])+abs(y[i]-y[j])){
dp[i]=max(dp[i],dp[j]+1);
}
}
}
int ans=INT_MIN;
for(int i=1;i<=m;i++){
ans=max(ans,dp[i]);
}
cout<<ans<<"\n";
}
有注释版
#include<bits/stdc++.h> // 引入所有常用标准库
#define int long long // 将int定义为long long,防止整型溢出
using namespace std;
// 定义数组:t记录每只鼹鼠出现的时间,x和y是出现的坐标,dp是动态规划数组
int t[10010], x[10010], y[10010], dp[10010];
signed main() {
ios::sync_with_stdio(false); // 关闭同步提高cin/cout速度
cin.tie(0); // 解绑cin和cout,提高效率
cout.tie(0);
int n, m; // n是网格大小(n×n),m是鼹鼠数量
cin >> n >> m;
// 读取每只鼹鼠的信息(出现时间和位置)
for (int i = 1; i <= m; i++) {
cin >> t[i] >> x[i] >> y[i];
}
// 初始化,每只鼹鼠本身都可以成为一个单独的“击杀路径”
for (int i = 1; i <= m; i++) {
dp[i] = 1;
}
// 动态规划,遍历所有鼹鼠对,判断能否从j击杀再到i
for (int i = 1; i <= m; i++) { // 当前考察第i只鼹鼠
for (int j = 1; j < i; j++) { // 考察i之前的所有鼹鼠
// 判断机器人是否有足够的时间从j的位置走到i的位置
// 条件:时间差 ≥ 曼哈顿距离(机器人移动一格时间为1)
if (abs(t[i] - t[j]) >= abs(x[i] - x[j]) + abs(y[i] - y[j])) {
dp[i] = max(dp[i], dp[j] + 1); // 如果可以击杀i,更新dp[i]
}
}
}
// 在dp数组中找出最大值,即最多击杀的鼹鼠数
int ans = INT_MIN;
for (int i = 1; i <= m; i++) {
ans = max(ans, dp[i]);
}
cout << ans << "\n"; // 输出结果
}