题目描述
排列与组合是常用的数学方法,其中组合就是从 n 个元素中抽出 r 个元素(不分顺序且 r≤n),我们可以简单地将 n 个元素理解为自然数 1,2,…,n,从中任取 r 个数。
现要求你输出所有组合。
例如 n=5,r=3,所有组合为:
123,124,125,134,135,145,234,235,245,345。
输入格式
一行两个自然数 n,r(1<n<21,0≤r≤n)。
输出格式
所有的组合,每一个组合占一行且其中的元素按由小到大的顺序排列,每个元素占三个字符的位置,所有的组合也按字典顺序。
注意哦!输出时,每个数字需要 3 个场宽。以 C++ 为例,你可以使用下列代码:
cout << setw(3) << x;
输出占 3 个场宽的数 x。注意你需要头文件 iomanip
。
输入输出样例
输入
5 3
输出
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
代码
无注释版
#include<bits/stdc++.h>
using namespace std;
int n,r;
int a[22],b[22];
void dfs(int x){
if(x>r){
for(int i=1;i<=r;i++){
printf("%3d",a[i]);
}
cout<<"\n";
return;
}
for(int i=a[x-1]+1;i<=n;i++){
if(!b[i]){
a[x]=i;
b[i]=1;
dfs(x+1);
b[i]=0;
}
}
}
int main(){
cin>>n>>r;
dfs(1);
}
有注释版
#include<bits/stdc++.h>
using namespace std;
int n, r; // 定义全局变量n和r,n表示元素总数,r表示每个组合的元素个数
int a[22], b[22]; // a数组用于存储当前组合,b数组用于标记数字是否被使用过
// 深度优先搜索函数,用于生成所有组合
void dfs(int x) { // x表示当前正在处理组合中的第几个位置
if (x > r) { // 如果已经处理完组合中的所有位置
// 输出当前组合
for (int i = 1; i <= r; i++) {
printf("%3d", a[i]); // 每个数字占3个字符宽度
}
cout << "\n"; // 换行
return; // 返回上一层递归
}
// 尝试所有可能的数字
for (int i = a[x-1] + 1; i <= n; i++) { // 从上一个数字+1开始,保证升序排列
if (!b[i]) { // 如果该数字未被使用过
a[x] = i; // 将当前数字存入组合
b[i] = 1; // 标记该数字为已使用
dfs(x + 1); // 递归处理下一个位置
b[i] = 0; // 回溯,取消该数字的标记
}
}
}
int main() {
cin >> n >> r; // 输入n和r
dfs(1); // 从第一个位置开始生成组合
return 0;
}