Python爬虫:大学招生信息抓取与分析——专业、招生计划、录取分数

引言

随着高考的临近,学生和家长们对于大学的选择愈发关注。各大学的招生信息,如专业设置、招生计划、录取分数线等,成为大家做出选择的重要依据。而这些信息通常会发布在各大学的官方网站上。为了更高效地获取这些信息,本文将使用 Python 爬虫技术,抓取各大学招生网站上的相关数据,并对其进行分析和展示。

在这篇博客中,我们将从最基础的爬虫构建开始,介绍如何抓取各大学的招生信息,涵盖专业设置、招生计划、历年录取分数等内容,并将数据进行清洗和分析。本文将使用最新的 Python 技术,包括 requests、BeautifulSoup、pandas、Selenium 等,帮助你快速构建一个功能强大的大学招生信息抓取工具。

1. 了解爬虫基本知识

1.1 爬虫简介

爬虫(Web Crawler)是指通过程序自动抓取网络上信息的工具。Python 爬虫是通过发送 HTTP 请求,获取网页内容并解析,从中提取所需数据的过程。其基本流程如下:

  1. 发送 HTTP 请求:通过 HTTP 协议获取网页的内容。
  2. 解析网页:获取到网页后,解析 HTML 或 JSON 数据。
  3. 提取信息:从解析后的数据中提取出所需的信息(如专业、招生计划、录取分数等)。
  4. 数据存储:将抓取的数据存储到本地文件或数据库中,便于后续分析。
  5. 数据
### 如何用Python进行高校招生数据分析 #### 数据采集 为了获得高质量的原始数据,可以利用Python中的`requests`和`BeautifulSoup`库构建爬虫程序来抓取来自各个高校官网以及教育部门发布的招生信息。这些信息通常涵盖了历年的报考详情、录取分数段、各专业的热门程度等方面的内容[^1]。 ```python import requests from bs4 import BeautifulSoup def fetch_data(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') # 假设目标网页结构已知,这里解析具体页面元素并提取所需数据 data = [] for item in soup.find_all('div', class_='data-item'): record = { "year": int(item['data-year']), "university": str(item['data-univ']), "major": str(item['data-major']), "score_min": float(item['data-score-min']) } data.append(record) return data ``` #### 数据清理预处理 一旦获得了初步的数据集合之后,则需对其进行必要的清洗操作以提高其可用性和可靠性。这一步骤涉及删除冗余记录、修正异常值,并按照特定标准对条目实施标准化转换,从而保证最终用于分析的数据集既精确又具代表性[^2]。 ```python import pandas as pd raw_df = pd.DataFrame(fetch_data("http://example.com/admissions")) cleaned_df = raw_df.drop_duplicates().dropna() # 删除重复项及缺失值 # 更多复杂的清理逻辑可以根据实际情况添加... ``` #### 数据探索性分析(EDA) 借助Pandas提供的统计函数以及其他辅助工具包如Matplotlib或Seaborn来进行描述性的总结概括;绘制直方图、箱线图等图形有助于识别潜在的趋势模式或是离群点的存在情况。 ```python %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns sns.set(style="whitegrid") plt.figure(figsize=(8,6)) ax = sns.boxplot(x='year', y='score_min', hue='university', data=cleaned_df.sample(500), palette="Set3") ax.set_title('Minimum Admission Scores Over Years by University'); ``` #### 构建预测模型 如果希望进一步深入探究影响因素之间的关系,还可以考虑应用机器学习方法建立回归模型或其他类型的预测器。Scikit-Learn是一个非常适合此类任务的选择之一,在此之前可能还需要额外引入一些特征工程技巧来增强输入变量的表现力。 ```python from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression X = cleaned_df[['year']].values.reshape(-1, 1) # 特征矩阵 y = cleaned_df['score_min'].values # 目标向量 model = LinearRegression() X_train, X_test, y_train, y_test = train_test_split(X, y) model.fit(X_train, y_train) predictions = model.predict(X_test) print(f'R² Score: {model.score(X_test, y_test):.3f}') ``` #### 结果呈现报告生成 最后阶段就是将上述过程中得到的各种发现转化为易于理解的形式——无论是静态图片还是互动式的Web应用程序都可以作为有效的传播媒介。Plotly Dash框架允许创建具备高度定制化的仪表板界面,而Jupyter Notebook则适合撰写包含文字说明和技术细节在内的综合性文档。 ```python import dash import plotly.express as px app = dash.Dash(__name__) fig = px.scatter(cleaned_df, x="year", y="score_min", color="university", title="Admission Trends Visualization") app.layout = html.Div([ dcc.Graph(id='admission-trends-graphic', figure=fig), ]) if __name__ == '__main__': app.run_server(debug=True) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python爬虫项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值