1. 引言
1.1 空气质量预测的背景和意义
随着全球工业化进程加快,空气污染问题日益严峻。空气中细颗粒物(PM2.5、PM10)、二氧化氮(NO2)、臭氧(O3)等污染物的浓度变化不仅影响人们的身体健康,也影响城市的可持续发展。通过准确预测空气质量,政府和公众可以提前采取应对措施,减少污染暴露风险。
1.2 预测空气质量的挑战
空气质量预测属于复杂的时空序列预测问题,面临诸多挑战:
- 空气质量数据与气象、交通、工业排放等多源异构数据的融合
- 数据量大且分布复杂
- 空间相关性和时间动态特征难以捕捉
- 需要高精度和实时预测能力
1.3 技术发展趋势
近年来,借助大数据处理平台及深度学习技术,空气质量预测取得显著进步。尤其是:
- 利用大数据技术实现高效数据清洗与存储
- 应用时序神经网络(LSTM、Transformer)精准捕捉时间依赖
- 融合图神经网络捕获空间依赖关系
- 在线部署实现实时预测与动态响应
2. 数据获取与大数据平台搭建
2.1 数据来源介绍
- 环境监测站数据:各城市环保局提供的空气质量监测数据,包括PM2.5、PM10、CO、NO2