1. 引言
随着数字支付的普及,信用卡欺诈事件频发,给金融机构和用户带来了巨大经济损失。信用卡欺诈检测作为金融安全领域的重要研究方向,致力于通过机器学习技术及时发现异常交易,保障交易安全。
本文将系统介绍如何构建一个高效的信用卡欺诈检测模型。我们将基于Python,结合最新机器学习和深度学习技术,完成从数据预处理、特征工程、模型训练到评估的全流程。
2. 信用卡欺诈检测问题简介
信用卡欺诈检测是一个典型的二分类问题,样本类别高度不平衡(正常交易远多于欺诈交易),这对模型提出了挑战。
目标:给定一笔信用卡交易,判断其是否为欺诈。
2.1 业务难点
- 数据极度不平衡:欺诈交易占比通常低于1%。
- 特征难以解释:有时数据经过匿名处理,难以理解业务含义。
- 实时检测需求:模型需要快速准确地识别欺诈交易。
- 欺诈手段多样且不断演进。
3. 数据集介绍
本示例使用的是著名的公开数据集——Credit Card Fraud Detection Dataset,数据来自欧洲某银行的信用卡交易记录,包含284,807条交易,其中492条欺诈。