Python数据分布类型图(箱型图、直方图)

本文介绍如何使用Python绘制箱型图和直方图来展示航空公司男性和女性用户的年龄分布。通过箱型图,我们可以看到男性和女性年龄的最小值、下四分位数、中位数、上四分位数和最大值。直方图则用于展示数据分布状态,帮助理解过程质量状况,便于质量改进工作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文示例:根据箱型图、直方图的代码和数据的条件查询方法,画出航空公司男性和女性用户的年龄分布箱型图直方图

目录

图形概念

1.箱型图

2.直方图

步骤:

1、导入相关库

2、对数据进行处理

 3、绘制图形

                箱型图

                直方图

图形概念

1.箱型图

        箱型图是一种用作显示一组数据分散情况资料的统计图,它主要用于反映原始数据分布的特征,还可以进行多组数据分布特征的比 较。箱线图的绘制方法是:先找出一组数据的上边缘、下边缘、中位数和两个四分位数;然后, 连接两个四分位数画出箱体;再将上边缘和下边缘与箱体相连接,中位数在箱体中间。

25%分位数(下四分位数):序列中有25%的数据小于这个数

中位数(50%分位数):序列中有50%的数据小于这个数

75%分位数(上四分位数):序列中有75%的数据小于这个数

最大值:序列100%的数据小于这个数

最小值:序列没有数据小于这个数

2.直方图

直方图(Histogram),又称质量分布图,是一种统计报告图,由一系列高度不等的纵向条纹或线段表示数据分布的情况。 一般用横轴表示数据类型,纵轴表示分布情况。直方图容易和柱形图搞混淆,外观上没有区别,但是直方图一般指用来描述数据的分布的柱形图。

直方图的常见作用有以下三点:

(1)显示质量波动的状态;

(2)较直观地传递有关过程质量状况的信息;

(3)通过研究质量波动状况之后,就能掌握过程的状况,从而确定在什么地方集中力量进行质量改进工作。

步骤:

1、导入相关库

import pandas as pd
from pyecharts import options as opts
from pyecharts.charts import Boxplot
from pyecharts.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

db_ztt_2037

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值