数据探索与可视化

目录

前言

一、什么是数据探索?

二、什么是可视化?

1、缺失值处理:

2、简单的缺失值处理方法:

(1).首先我们读取并查看这个数据集:

(2).然后我们再用pd.isna()判断a的每个元素是否为缺失值:

(3).然后再用sum()方法对每列求和,计算出每列缺失值的数量:

3、 对缺失值进行插补:

(1)使用缺失值前面的值进行填充:

(2)使用缺失值后面的值进行填充:

(3)使用均值进行填充:


前言

如果将文本数据与图表数据相比较,人类的思维模式更适合于理解后者,原因在于图表数据更加直观且形象化,它对于人类视觉的冲击更强,这种使用图表来表示数据的方法被叫做数据可视化

一、什么是数据探索?


在前面我们说到,所谓机器学习,就是用已知的数据通过算法去预测未来未知的数据。但是这个过程进行的前提就是要保证已知数据的完成性。所以数据探索,就是检查数据是否完整,是否有缺失值。

二、什么是可视化?


可视化就是将数据以图像的形式呈现出来,例如散点图、直方图、正态图等等,这些都是将单纯的数据以图像的形式呈现,从而可以起到更清晰有效地传达、沟通并辅助数据分析的作用。

1、缺失值处理

数据缺失:指在数据采集、传输和处理等过程中,由于某些原因导致数据不完整的情况。

下面学习一下缺失值的处理方法

2、简单的缺失值处理方法:

在处理缺失值之前,我们肯定要有缺失值才能处理,所以我们第一步是去检查数据中有没有缺失值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

你的名字·

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值