目录
(2).然后我们再用pd.isna()判断a的每个元素是否为缺失值:
(3).然后再用sum()方法对每列求和,计算出每列缺失值的数量:
前言
如果将文本数据与图表数据相比较,人类的思维模式更适合于理解后者,原因在于图表数据更加直观且形象化,它对于人类视觉的冲击更强,这种使用图表来表示数据的方法被叫做数据可视化。
一、什么是数据探索?
在前面我们说到,所谓机器学习,就是用已知的数据通过算法去预测未来未知的数据。但是这个过程进行的前提就是要保证已知数据的完成性。所以数据探索,就是检查数据是否完整,是否有缺失值。
二、什么是可视化?
可视化就是将数据以图像的形式呈现出来,例如散点图、直方图、正态图等等,这些都是将单纯的数据以图像的形式呈现,从而可以起到更清晰有效地传达、沟通并辅助数据分析的作用。
1、缺失值处理:
数据缺失:指在数据采集、传输和处理等过程中,由于某些原因导致数据不完整的情况。
下面学习一下缺失值的处理方法
2、简单的缺失值处理方法:
在处理缺失值之前,我们肯定要有缺失值才能处理,所以我们第一步是去检查数据中有没有缺失值。