- 博客(2)
- 收藏
- 关注
原创 数据清洗操作
本文展示了对哈尔滨2019年天气数据的预处理流程。首先通过数据去重和空值处理确保数据质量,然后使用箱线图识别并处理异常温度值(保留-40℃至40℃)和AQI值(保留≤300)。通过字典映射方法将风向、天气等文本数据转换为数值,并设计了天气类型提取函数。最后采用max-min方法对最高温度进行归一化处理,并演示了OneHot编码实现。整个流程涵盖了数据清洗、异常处理、特征工程等关键步骤,为后续分析建模奠定了良好基础。
2025-07-20 10:30:01
758
原创 数据挖掘-pandas
weather[['quality']].value_counts(normalize=True)#查看数据是否均衡。weather.loc[0:2,['date','aqi']] #访问0-2行的date列和aqi列。weather.iloc[0:2,[1,-1]]#访问0-1行,1和最后一列。weather.iloc[0:2,[1,3]]#访问0-1行,1和3列。weather.iloc[0:2,1:4]#访问0-1行,1-4列。weather['quality'].unique()#去除重复。
2025-07-18 13:13:28
604
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人