机器学习导入波斯顿房价数据集的三种方法

1. 直接通过sklearn库进行数据导入

from sklearn.datasets import load_boston  

 这种方法在比较新的版本中会被移除掉,下图是1.2.2的sklearn作为演示,导入失败:
在这里插入图片描述

 可通过使用旧版python解释器来导入,下图是python3.6,,sklearn版本是0.24.1,成功导入:
在这里插入图片描述

2.导入函数 fetch_openml

from sklearn.datasets import fetch_openml
boston = fetch_openml(name="boston", version=1, as_frame=True)
boston['data']

在这里插入图片描述

3.通过pandas导入

 从第一种方法的报错中找到数据的地址:
  data_url = “http://lib.stat.cmu.edu/datasets/boston”

import pandas as pd 
import numpy as np
data_url = "http://lib.stat.cmu.edu/datasets/boston"

# 通过sep指定空格作为分隔符
# skiprows = 22 表示跳过前22行
# header=None表示不将第一行作为列名
raw_df = pd.read_csv(data_url, sep='\s+', skiprows=22, header=None)

# 将原始数据转换为Numpy数组
data = np.hstack([raw_df.values[::2, :], raw_df.values[1::2, :2]])

# 提取目标值
target = raw_df.values[1::2, 2]

data

在这里插入图片描述

### 使用机器学习进行线性回归预测波士顿房价 以下是基于 `scikit-learn` 的 Python 示例代码,用于通过线性回归模型预测波士顿房价。此代码涵盖了完整的机器学习流程,包括数据加载、预处理、建模以及评估。 #### 导入必要的库 ```python import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, r2_score ``` #### 加载并探索数据集 波士顿房价数据集可以通过 `sklearn.datasets.load_boston()` 函数获取[^1]。然而需要注意的是,在较新的版本中该函数可能已被移除或替换为其他形式。因此可以考虑手动下载数据或者使用替代方法。 ```python boston = datasets.load_boston() # 如果不可用,请查阅官方文档更新方式 X = boston.data y = boston.target print(f"Features: {boston.feature_names}") ``` #### 划分训练集与测试集 为了验证模型性能,通常会将数据划分为训练集和测试集两部分。 ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 构建线性回归模型 利用 `LinearRegression` 类创建一个简单的线性回归模型实例,并对其进行拟合操作。 ```python model = LinearRegression() model.fit(X_train, y_train) ``` #### 进行预测 完成模型训练之后即可针对未知样本执行预测任务。 ```python predictions = model.predict(X_test) ``` #### 性能评价指标计算 采用均方误差 (MSE) 和决定系数 \(R^2\) 来衡量模型的表现情况。 ```python mse = mean_squared_error(y_test, predictions) r2 = r2_score(y_test, predictions) print(f"Mean Squared Error: {mse:.2f}") print(f"R-squared Value: {r2:.2f}") ``` 以上即是一个典型的运用线性回归解决波士顿房价预测问题的过程概述及其对应实现脚本[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值