1. 背景介绍
1.1 人工智能与多智能体系统
人工智能 (AI) 的发展经历了漫长的历程,从早期的专家系统到如今的深度学习,AI 已经渗透到我们生活的方方面面。然而,大多数现有的 AI 系统都属于单智能体系统,即单个智能体在特定环境中执行任务。随着 AI 应用场景的不断扩展,越来越多的任务需要多个智能体协同完成,例如:
- 自动驾驶汽车: 需要车辆之间相互协作,以确保交通安全和效率。
- 智能电网: 需要多个智能电网设备协同工作,以实现能源的优化分配和管理。
- 机器人团队: 需要多个机器人协同完成复杂的任务,例如搜索和救援。
多智能体系统 (MAS) 研究多个智能体之间的交互、协作和竞争,旨在实现比单个智能体更强大的功能。
1.2 强化学习与LLM
近年来,强化学习 (RL) 和大型语言模型 (LLM) 成为了人工智能领域的热门研究方向。
- 强化学习 (RL) 是一种机器学习方法,通过与环境交互学习如何做出决策,以最大化累积奖励。RL 在游戏、机器人控制、资源管理等领域取得了显著的成果。
- 大型语言模型 (LLM) 是一种深度学习模型,能够处理和生成自然语言文本。LLM 在机器翻译、文本摘要、问答系统等领域表现出色。
将 RL 和 LLM 结合起来,可以构建更加智能