Transformer大模型实战 命名实体识别任务

Transformer, 命名实体识别, NER, 自然语言处理, NLP, 预训练模型, fine-tuning, BERT, RoBERTa, XLNet

1. 背景介绍

命名实体识别 (Named Entity Recognition, NER) 是自然语言处理 (Natural Language Processing, NLP) 中一项重要的基础任务,旨在识别文本中的实体,并将其分类到预定义的类别中,例如人名、地名、组织机构、时间、日期等。NER 在许多应用场景中发挥着关键作用,例如信息抽取、问答系统、机器翻译、文本摘要等。

随着深度学习技术的快速发展,基于 Transformer 架构的预训练语言模型 (Pretrained Language Model, PLM) 在 NER 任务上取得了显著的成果。这些模型通过在海量文本数据上进行预训练,学习了丰富的语言表示能力,可以有效地捕捉文本中的语义信息,从而提高 NER 的准确率。

2. 核心概念与联系

2.1 Transformer 架构

Transformer 架构是一种新型的序列到序列模型,其核心特点是利用自注意力机制 (Self-Attention) 来捕捉序列中的长距离依赖关系。与传统的循环神经网络 (RNN) 不同,Transformer 不需要逐个处理序列中的元素,而是可以并行处理整个序列,从而提高训练效率。

Transformer 架构主要由以下几个部分组成:

  • 编码器 (
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值