自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 深度学习 目标检测常见指标和yolov1分析

如题,这篇介绍一下目标检测中常见的一些指标以及简单分析一下 yolov1 的模型结构。首先得知道什么是目标检测:目标检测(Object Detection)是计算机视觉领域的核心任务之一,旨在识别图像或视频中感兴趣的物体,并确定它们的位置和类别。与图像分类(仅识别物体类别)不同,目标检测需要同时解决(whats)和(where)两个问题。

2025-07-29 18:40:56 453

原创 循环神经网络 中文情感分析案例

目录一、数据处理1、读取原始文件2、清洗数据3、分词4、构建词典并保存5、把每条文本编码成数字列表6、固定长度二、设置数据集、数据加载器三、构建模型结构四、配置具体模型参数与训练细节五、开始训练并保存六、模型测试(测试集)七、单条评论测试(可选)又做了一个小案例,刚好来复盘一下,是关于分析酒店评论的好坏,首先原始数据集如下:前面一列是标签,1代表好评,0代表差评,后面的是评论内容,一共有5000多条评论,下面开始:这里我总结了一下大概的步骤:读取原始文件 --> 清洗数据(去除标点符号等) --> 分词 -

2025-07-28 18:51:44 806

原创 深度学习 pytorch图像分类(详细版)

苯人的项目是基于CNN实现香蕉成熟度的小颗粒度分类,针对六种不同状态(新鲜成熟的、新鲜未熟的、成熟的、腐烂的、过于成熟的、生的)进行高精度视觉识别。由于香蕉的成熟度变化主要体现在颜色渐变、斑点分布及表皮纹理等细微差异上,传统图像处理方法难以准确区分。因此,本项目通过构建深层CNN模型,利用卷积层的局部特征提取能力捕捉香蕉表皮的细微变化,并结合高阶特征融合技术提升分类精度。

2025-07-21 15:00:19 890

原创 深度学习 Pytorch图像分类步骤

Dataset是一个抽象类,是所有自定义数据集应该继承的基类。它定义了数据集必须实现的方法,一个是 __len__方法,还有一个是 __getitem__方法,其中是返回的总数据的个数,是根据索引 idx 返回数据集中的样本并提取,然后进行预处理或变换,总之 Dataset 是为了告诉 Pytorch 我这个数据集该怎么数,怎么取。

2025-07-15 20:13:46 1103 3

原创 深度学习 tensor及其相关操作

PyTorch是一个基于Python的深度学习框架,它提供了一种灵活、高效、易于学习的方式来实现深度学习模型,最初由Facebook开发,被广泛应用于计算机视觉、自然语言处理、语音识别等领域。PyTorch提供了许多高级功能,如自动微分(automatic differentiation)自动求导(automatic gradients)等,这些功能可以帮助我们更好地理解模型的训练过程,并提高模型训练效率。没错苯人开始 pytorch的学习了,这篇来写一下 Torch 的一些基本API。

2025-07-09 19:59:58 493

原创 机器学习 朴素贝叶斯、决策树、集成学习方法之随机森林

我们知道分类算法主要用于对进行分类,标签型数据有一下几个特点:无序性、非数值性、多样性。比如“性别”可以分为“男”和“女”,但“男”和“女”之间不存在大小、高低等顺序关系,也不是数值,分类算法就是针对这样的数据。

2025-07-02 16:11:08 856 1

原创 opencv 图像噪点消除 图像梯度处理

首先,噪点是图像中随机出现的亮度或颜色异常像素(如“雪花点”“颗粒感”),主要由传感器噪声、低光照、压缩失真等引起,表现为图像中随机的亮度,也可以理解为有那么一些点的像素值与周围的像素值格格不入,常见的噪声类型包括高斯噪声和椒盐噪声。这里强调一下,滤波并不代表模糊噪点,滤波是一种技术,不同的滤波会产生不同的效果,比如低通滤波器是模糊,高通滤波器是锐化,所以模糊只是滤波技术产生的一种效果。前面两种滤波方式,卷积核内的每个值都一样,也就是说图像区域中每个像素的权重也就一样。

2025-07-02 09:18:38 1112

原创 图片镜像旋转、图像缩放、图像矫正

与图像旋转里的缩放的原理一样,图像缩放的原理也是根据需要将原图像的像素数量增加或减少,并通过插值算法来计算新像素的像素值,图像缩放提供了五种插值方法,分别是最近邻插值、双线性插值、像素区域插值、立方插值、Lanczos插值,与图像旋转实验中的五个插值方法相同,这里就不再过多介绍,详细可看我之前写的插值方法。在OpenCV中,图片的镜像旋转是以图像的中心为原点进行镜像翻转的,也就是说,水平翻转时,图像的左侧和右侧会关于中心点进行交换;图像的旋转是围绕一个特定点进行的,而图像的镜像旋转则是围绕坐标轴进行的。

2025-06-30 19:14:06 1050

原创 机器学习 KNN算法、模型选择与调优

KNN(K-Nearest Neighbors,K近邻)算法是一种基本的分类方法(也可用于回归),它根据K个邻居样本的类别来判断当前样本的类别,核心原理是。例如: 有10000个样本,选出离样本A的7个“邻居”,然后在这7个样本中假设:类别1有2个,类别2有3个,类别3有2个,那么就可以认为A样本属于类别2,因为在它的7个“邻居”中 类别2最多,用一句古话解释就是:近朱者赤近墨者黑。

2025-05-14 16:33:10 839

原创 机器学习 特征工程

在机器学习时,我们获得的原始数据往往会存在以下问题:信息冗余或无关(如无关字段、重复特征);格式不适合模型(如文本、类别数据需要数值化);缺失值或噪声(如数据采集错误);维度灾难(特征过多导致计算效率低)等,所以在对数据集进行进一步操作之前就需要特征工程,即将任意数据(如文本或图像)转换为可用于机器学习的数字特征,

2025-05-11 11:04:42 873

原创 opencv 图像旋转 边缘填充 插值方法

图像旋转是指图像以某一点为旋转中心,将图像中的所有像素点都围绕该点旋转一定的角度,并且旋转后的像素点组成的图像与原图像相同,在了解图像旋转之前首先要明白单点旋转。

2025-05-01 12:06:12 1695

原创 opencv 图像添加水印

上一篇讲到利用掩膜可以抠出图像的某个区域,那么把这个区域无缝添加到另一张图上即为添加水印。

2025-04-29 19:47:04 957

原创 opencv 图片颜色识别与替换

RGB颜色空间是我们接触最多的颜色空间,是一种用于表示和显示彩色图像的一种颜色模型,R代表红色(Red),G代表绿色(Green),B代表蓝色(Blue),这三种颜色通过不同强度的光的组合来创建其他颜色,广泛应用于我们的生活中,比如电视、电脑显示屏等。掩膜(Mask)是一种在图像处理中常见的操作,它选择性地遮挡图像的某些部分,以实现特定任务的目标,通常是一个二值化图像,并且与原图像的大小相同,其中目标区域被设置为255(白色),而其他区域被设置为0(黑色),并且目标区域可以根据HSV的颜色范围进行修改。

2025-04-29 15:20:41 1683

原创 opencv 形态学变换相关

8.形态学梯度形态学变换(Morphological Transformations)是一种基于形状的简单变换,它的处理对象通常是二值化图像。形态学变换有两个输入,一个输出:输入为原图像、核(结构化元素),输出为形态学变换后的图像。其基本操作有腐蚀和膨胀等,其中腐蚀和膨胀这两种操作是相反的,即较亮的像素会被腐蚀和膨胀。在自适应二值化操作的时候要框一个n*n的小区域,其中心点要将图中的每个像素点都遍历完,这个小区域就是“”核“”,小区域内每个位置的值就是核值。

2025-04-22 17:15:11 1887 2

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除