AI翻唱-RVC本地部署使用

原作者项目说明书:RVC指南

这是lz的第二个AI翻唱项目。。。

第一个跑了一天一夜但是效果不是很好。这个项目也跑了一天一夜。。。

但这个项目效果确实更出众,lz是因为数据集较多,(lz将近300段数据集,综合下来半个小时,跑了将近200步,且lz显存较小,只有4GB)比较追求高质量的效果,uu们在使用该项目时,数据集不多会很快的。

花儿不哭开源的免费的软件

原项目github发布地址:https://github.com/RVC-Boss/Retrieval-based-Voice-Conversion-WebUI

SVC全称为Singing Voice Conversion(歌声转换),{RVC、DDSP-SVC、Diffuision-SVC,Diff-SVC,So-VITS-SVC}∈SVC

RVC的全称为Retrieval-based Voice Conversion,基于检索的声音转换,一种语音转换技术。比较绕口一点的解释是:改变一段原始语音(源语音)的某些特征,使其听起来像另一个说的(目标说话人),同时保持原始语音的内容和韵律。简单一点的理解就是,AI翻唱,让目标人唱目标歌曲。

本地部署 

1.下载项目

lz的环境为win11。

将项目下载到本地,解压,双击go-web

稍等一会儿会在默认浏览器弹出RVC-WebUI界面,建议使用Edge/chrome浏览器

补丁替换

lz下载的整合包为:RVC20240604Nvidia,同时下载了0128补丁,复制0128文件夹中所有文件,将其粘贴到RVC20240604Nvidia文件夹中,在弹出窗口中选择替换文件夹。

2.数据集准备

该项目和lz之前使用过的GPT-SoVITS是同一位作者,两个项目都集成了UVR5,便于使用者分离目标音源中的音乐与演唱者的音频。在lz之前的blog里详细地写了数据集的分离说明。AI语音训练——GPT-SoVITS(GSV)-CSDN博客

纯净人声获取步骤:伴奏&人声分离→和声分离→一次去混响→二次去混响→去噪音。 

更多lz懒得搬了。。。  

有了解到Ripx这个软件也可以去除和声等音频中的杂音,实现人声的还原,lz正在下...,uu们也可以尝试一下。

快速开始

原项目中有的简易教程

"E:\RVC\RVC20240604Nvidia\docs\小白简易教程.doc"

2.1数据集管理

实验名可以使用训练人的名称,但名称中不可以有中文。目标采样率建议保持40K,48K会有炸炉的风险(原项目作者原话)。如果不想让模型具备歌唱能力,则不需要勾选音高指导。

数据集文件夹管理

将路径粘贴,开始识别数据。此时也可以通过Console窗口查看数据导入信息。

可以随时在console窗口查看信息,所有音频信息处理完毕后console窗口会显示end preprocess

2.2提取特征 

基本上保持默认即可,多显卡用户可以研究一下红色窗口,如果对模型有其他需求,可以前去了解其他音高算法。如果只是想AI翻唱,保持勾选rmvpe_gpu即可

 console窗口或者上图的输出信息中显示all-feature-done则表明特征提取顺利地完成了。

开始训练,先设置训练总轮数,再根据总轮数设置保存频率最后根据显存数量设置batch_size。 

右侧橙色框图部分可以根据自身硬盘内存数进行设置,整理好之后,一键训练即可。

 点击一键训练即可开始训练模型了。

推理

变调说明

lz是声乐小白,推测大致思路应该是,男声音调较低,女声音调较高,所以男转女需要调高,女转男需要调低

男声(歌曲)→女声(训练数据集),+7,如果歌曲本身音高很高,可以+4/3

女声(歌曲)→男声(训练数据集),-7,或者-4/3

如果训练的模型比较好,检索占比可以调高一点,会更还原音色

注意此处的音频是歌曲的干声音频

王进喜——有条件要上,没有条件创造条件也要上。——来点鸡汤8

以上end 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨稚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值