提示词框架(2)--CRISPE

CRISPE是一个简单却强大的框架,由五个部分组成:Context(背景)、Role(角色)、Information(信息)、Structure(结构)、Expectation(期望)。它旨在帮助我们更清晰地传达指令,提高沟通效率。

适用场景:

角色扮演,角色扮演,角色扮演,重要的事情说三遍,看着谁牛,就让AI扮演谁。

    CR: Capacity and Role (角色)

    • 定义:告诉AI让它扮演什么角色,顺便赋予AI一些能力
    • 示例1:你是一名经验丰富的数学老师,具备足够的耐心和鼓励性教学风格,能够简单明了解释数学知识
    • 示例2:你是一名经验丰富的儿童营养师,具备丰富的营养学知识,能够轻松的搭配出不同的食谱

    I:Insight (背景),大家都说是背景就这么理解吧

    • 定义:告诉AI要服务对象的信息,或其他潜在信息
    • 示例1: 
          学生信息:你将为了8岁的孩子提供学习帮助,她正在读小学2年纪  
          学生性格:她比较没有耐心
    • 示例2
          学生信息:家里有2个孩子,1个男孩4岁,一个女孩9岁

    S:Statement(任务)

    • 定义:让AI干的事情
    • 示例1:教会孩子计算矩形的面积
    • 示例2:为孩子制定一周的早餐菜谱,既满足孩子的口味也营养丰富

    P:Personality(个性)

    • 定义:告诉AI你的一些潜在期望,期望什么风格,格式,形式。或者希望扮演的角色,严厉或温语气
    • 示例1:风格:友好,有耐心的,希望像知心大姐姐一样
    • 示例2:用表格的形式,输出每天的餐谱,并介绍每样材料的营养价值

    E:Experiment(实验)

    • 定义:非必填,告诉AI多个方案或方法
    • 示例1:请用2种或以上方法,解答问题
    • 示例2:每日提供2种菜谱方案,可以用来选择

    简单概括步骤:

    1. 告诉AI让它扮演谁
    2. 告知AI一些背景信息
    3. 告知AI让它干啥
    4. 告知AI你的一些潜在期望
    5. 告知AI提供多种方案

    完整例子

    示例1:

    # Capacity And Role #

    你是一名经验丰富的数学老师,具备足够的耐心和鼓励性教学风格,能够简单明了解释数学知识

    # Insight #

    学生信息:你将为了8岁的孩子提供学习帮助,她正在读小学2年纪  
    学生性格:她比较没有耐心

    # Statement #

    教会孩子计算矩形的面积

    # Personality #

    风格:友好,有耐心的,简单明了的方式,希望像知心大姐姐一样

    # Experiment #

    请用2种或以上方法,解答问题

    示例2:

    # Capacity And Role #

    你是一名经验丰富的儿童营养师,具备丰富的营养学知识,能够轻松的搭配出不同的食谱

    # Insight #

    学生信息:家里有2个孩子,1个男孩4岁,一个女孩9岁

    # Statement #

    为孩子制定一周的早餐菜谱,既满足孩子的口味也营养丰富

    # Personality #

    用表格的形式,输出每天的餐谱,并介绍每样材料的营养价值

    # Experiment #

    每日提供2种菜谱方案,可以用来选择

    ### 关于Prompt提示词的设计框架和结构 #### 设计框架的重要性 为了克服传统直接指令提示方式中存在的不足,即内容过少无法全面传达需求并抓住重点等问题,CRISPE 提供了一个较为完整的框架用于指导提示词的设计。不过,CRISPE 缺乏清晰的结构化设计,这影响到了其易学性和高质量提示的重复利用效率[^1]。 #### 提示词定义及其作用 AI Prompt(提示词)是指人在与人工智能系统交流时所使用的命令语句,它不仅包含了具体的任务描述还涉及了期望的结果形式以及其他必要的背景资料。良好的提示词可以帮助用户更加精准有效地获取所需的信息或者完成特定的任务[^2]。 #### 结构化的提示词框架 一种有效的提示词构建方法采用树形架构来组织各个组成部分。在这个体系里,每一个分支点都代表着一系列逻辑上连续的话语片段,它们共同构成了从问题到解决方案之间的桥梁。这样的安排有助于大型语言模型基于目标导向型思考模式逐步推进求解流程,并对自己的解答路径做出合理的评价[^3]。 ```python def create_prompt_tree(prompt_root, context=None): """ 构建一个以根节点为基础的提示词树 参数: prompt_root (str): 根节点的内容字符串 context (dict, optional): 可选参数,默认为空字典;可以用来传递额外环境变量给子节点 返回值: dict: 表达整个提示词层次关系的数据结构 """ if not isinstance(context, dict): context = {} tree_structure = {"root": prompt_root} def add_child(parent_key, child_content): nonlocal tree_structure children = tree_structure.get("children", []) new_entry = {parent_key: child_content} children.append(new_entry) tree_structure["children"] = children # 假设这里会有一些逻辑去动态添加孩子节点... return tree_structure ```
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    放天狼

    恰逢那年你明媚

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值