
计算机视觉
文章平均质量分 67
本专栏主要是研究计算机视觉方向包括SLAM的学习以及代码学习等等的内容。
PaLu-LvL
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ORB-SLAM3的源码学习:TwoViewReconstruction通过两幅图像来实现重建
可以对比地图初始化那一部分来学习。原创 2025-02-17 18:46:12 · 682 阅读 · 0 评论 -
ORB-SLAM3的源码学习: CameraModels相机模型文件
针孔相机和鱼眼相机模型原创 2025-02-17 18:45:48 · 1230 阅读 · 0 评论 -
ORB-SLAM3源码的学习:GeometricTools文件
GeometricTools提供了两种几何计算功能:1.计算两个关键帧之间的基础矩阵、2.通过三角化算法从两个视角恢复三维点。这部分功能在ORB-SLAM2中就已经介绍过了,这里不过多赘述。原创 2025-02-16 14:29:27 · 481 阅读 · 0 评论 -
ORB-SLAM3的源码学习: Settings.cc:Settings::readImageInfo读取图像信息
这个函数的主要目的是从配置文件中读取和设置与相机图像尺寸相关的各种参数。它会根据需要调整图像的宽度和高度,并根据这些调整更新相机的校准参数。如果是立体相机或带IMU的相机,还会同时更新第二个相机的校准参数。最终,这些调整确保图像和相机校准信息的一致性。原创 2025-02-16 07:25:48 · 181 阅读 · 0 评论 -
ORB-SLAM3的源码学习: Settings.cc:settings构造函数
配置文件的构造函数原创 2025-02-15 15:41:44 · 355 阅读 · 0 评论 -
ORB-SLAM3的源码学习: Settings.cc:Settings::readCamera1/readCamera2 从配置文件中加载相机参数
读取相机参数的函数原创 2025-02-15 15:15:17 · 541 阅读 · 0 评论 -
Ubuntu创建启动应用程序的快捷方式(宝宝级攻略)
解决码编译或解压缩 .tar.gz 等方式手动安装的软件无快捷方式的问题。原创 2025-02-14 14:20:40 · 1338 阅读 · 0 评论 -
ORB-SLAM3源码的学习:Atlas.cc②: Atlas:: CreateNewMap创建新地图
简单总结一下地图是何时创建的:构建slam系统时还没有地图就需要创建,当时间戳不对劲时影响数据的同步时需要创建,当跟踪的第一和第二阶段都为失败时都要分别创建,且满足一定要求的地图会保留作为非活跃地图。原创 2025-02-10 22:37:52 · 810 阅读 · 0 评论 -
ORB-SLAM2源码学习:Tracking.cc:GrabImageStereo、GrabImageRGBD、GrabImageMonocular处理图像
该部分函数在Tracking.cc源文件中定义,用于处理图像。原创 2025-02-09 19:49:30 · 401 阅读 · 0 评论 -
ORB-SLAM2源码学习: LocalMapping.cc⑥: LocalMapping::KeyFrameCulling关键帧剔除
跟踪线程中插入关键帧相对宽松,主要是提高跟踪的成功率,它能保证在纹理不足、大旋转、快速运动等情况下也能有较好的跟踪。但这些关键帧全都传入到局部建图线程中会使局部BA进行的非常慢,因此需要剔除一些冗余度高的一些关键帧。原创 2025-02-08 15:05:42 · 315 阅读 · 0 评论 -
ORB-SLAM2源码学习:Tracking.cc⑧:Tracking::UpdateLocalKeyFrames更新局部关键帧
将共视关键帧设置为局部关键帧将共视最高的关键帧设置为参考关键帧原创 2025-02-08 15:02:03 · 270 阅读 · 0 评论 -
ORB-SLAM3的源码的学习:ORB-SLAM3 中的跟踪线程
ORB-SLAM3 中的跟踪线程体流程和ORB-SLAM2基本一致。原创 2025-02-07 10:54:04 · 830 阅读 · 0 评论 -
ORB-SLAM2源码学习:KeyFrame.cc④: void KeyFrame::UpdateBestCovisibles更新最佳共视
在添加新连接之后就要重新对所有的共视关键帧和权重的那两个列表重新进行降序排列,这样非常容易知道列表的第一位就是最佳共视关键帧和权重。原创 2025-02-05 15:44:58 · 201 阅读 · 0 评论 -
ORB-SLAM2源码学习:⑥关键帧构成的图结构
在ORB-SLAM2中,由关键帧构成了几种非常重要的图结构,包括共视图、本质图和生成树。原创 2025-02-05 07:22:55 · 437 阅读 · 0 评论 -
ORB-SLAM2源码学习:KeyFrame.cc③: void KeyFrame::AddConnection更新连接权重
这是一个简单的更新权重的一个函数,在更新共视关系时被调用。原创 2025-02-04 18:18:12 · 404 阅读 · 0 评论 -
ORB-SLAM2源码学习:KeyFrame.cc②: void KeyFrame::UpdateConnections更新共视关系
每次新建关键帧时也需要新建和它相连关键帧的关系。当关键帧的地图点发生变化时,需要更新和它相连关键帧之间的联系。原创 2025-02-03 07:55:41 · 379 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc(13): Initializer::ReconstructF用F矩阵恢复R,t及三维点
这里通过基础矩阵F来恢复位姿和三维点实际上是借助本质矩阵来进行的,相对于用单应矩阵H恢复位姿和三维点来说,它的解的结构较为简单其解的讨论形式也是比较简单的。原创 2025-01-24 10:28:42 · 1031 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc(12): Initializer::DecomposeE分解本质矩阵得到R,t
这部分实际上已经固定了求解模式我这里仅仅是做了一些简单的了解。原创 2025-01-24 10:26:27 · 253 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc(11): Initializer::ReconstructH用H矩阵恢复R, t和三维点
位姿可能有多组解,到底哪个才是真正的解呢? 方法是实践出真知。原创 2025-01-23 09:49:22 · 801 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc⑩: Initializer::FindFundamental找到最好的基础矩阵F
随机选取8对特征点进行基础矩阵的计算并对每个计算出来的基础矩阵进行评分通过不断的比较选出一个分数最高的基础矩阵。原创 2025-01-23 09:48:10 · 653 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc⑨: Initializer::FindHomography找到最好的单应矩阵H
随机选取8对特征点进行单应矩阵的计算并对每个计算出来的单应矩阵进行评分通过不断的比较选出一个分数最高的单应矩阵。原创 2025-01-22 14:31:29 · 492 阅读 · 0 评论 -
ORB-SLAM2源码学习:Initializer.cc⑧: Initializer::CheckRT检验三角化结果
经过上面的三角化我们成功得到了三维点,但是经过三角化成功的三维点并不一定是有效的,需要筛选才能作为初始化地图点。原创 2025-01-22 13:15:53 · 1347 阅读 · 0 评论 -
ORB-SLAM2源码学习:MapPoint.cc④: 新增地图点总结
总结ORB-SLAM2 中的新增地图点原创 2025-01-18 08:58:42 · 792 阅读 · 0 评论 -
ORB-SLAM2源码学习:ORBmatcher.cc⑥: int ORBmatcher::Fuse将地图点投影到关键帧中进行匹配和融合
该函数定义在特征匹配的源文件(ORBmatcher.cc)下,用于将地图点投影到关键帧中进行匹配和融合。原创 2025-01-17 11:23:01 · 366 阅读 · 0 评论 -
ORB-SLAM2源码学习:Tracking.cc: void Tracking::CreateNewKeyFrame 创建新的关键帧
这个函数除了利用当前帧构造新的关键帧和将这个关键帧设置为当前帧的参考关键帧外,对于双目和rgbd摄像头还要为当前帧生成新的地图点。原创 2025-01-17 10:22:05 · 340 阅读 · 0 评论 -
ORB-SLAM2源码学习: Frame.cc: cv::Mat Frame::UnprojectStereo将某个特征点反投影到三维世界坐标系中
这个函数是在跟踪线程中更新上一帧的函数中被调用。原创 2025-01-16 21:02:58 · 270 阅读 · 0 评论 -
ORB-SLAM3源码学习:LoopClosing.cc:LoopClosing::NewDetectCommonRegions检测共同区域
在ORB-SLAM3中,采用了新的位置识别算法,该算法首先检查几何一致性,也就是当前关键帧的5个共视关键帧(已经在地图中)中只要有3个满足条件(和候选关键帧组匹配成功),即可认为检测到共同区域。原创 2025-01-05 15:09:10 · 487 阅读 · 0 评论 -
预积分中的噪声项的递推模型
预积分中的噪声项的递推模型原创 2025-01-03 16:58:36 · 313 阅读 · 0 评论 -
ORB-SLAM3源码学习: KeyFrameDatabase.cc: KeyFrameDatabase::DetectNBestCandidates找到N个融合候选关键帧和闭环候选关键帧
找到N个融合候选关键帧和闭环候选关键帧原创 2025-01-03 16:45:58 · 693 阅读 · 0 评论 -
位置预积分中的噪声分离
位置预积分中的噪声分离原创 2025-01-02 20:29:57 · 324 阅读 · 0 评论 -
速度预积分中的噪声分离
速度预积分中的噪声分离原创 2025-01-02 20:29:24 · 316 阅读 · 0 评论 -
旋转预积分中的噪声分离
旋转预积分中的噪声分离原创 2024-12-30 16:57:49 · 374 阅读 · 0 评论 -
对IMU数据进行预积分(预积分的理想形式)
预积分的理想形式原创 2024-12-30 15:23:30 · 926 阅读 · 0 评论 -
ORB-SLAM3中的多地图系统①
多地图系统原创 2024-12-27 10:34:01 · 500 阅读 · 0 评论 -
ORB-SLAM2局部建图线程简易速通流程(2024.12.24)
这是一个可以接受的大致逻辑,虽说还是不够简明但大致的说明还是应该的原创 2024-12-26 15:38:08 · 427 阅读 · 0 评论 -
ORB-SLAM2源码学习:System.cc: System::TrackStereo、TrackRGBD、TrackMonocular追踪器接口
在之前的单目实例中,我们在初始化一个SLAM的系统后,系统处理了接受的文件数据,初始化并运行了各个线程,之后就要给追踪器传入图像进行整个SLAM的流程了。原创 2024-12-26 15:36:22 · 621 阅读 · 0 评论 -
ORB-SLAM2源码学习:LoopClosing.cc: LoopClosing::CorrectLoop 闭环矫正
闭环矫正是闭环中最重要的一个环节,前面是检测闭环,这里用检测的闭环关系对所有关键帧的位姿和地图点进行矫正。原创 2024-12-25 20:52:55 · 765 阅读 · 0 评论 -
ORB-SLAM2回环检测简易速通流程
这是一个可以接受的大致逻辑,虽说还是不够简明但大致的说明还是应该的。原创 2024-12-24 08:00:46 · 866 阅读 · 0 评论 -
ORB-SLAM2源码学习:LoopClosing.cc: LoopClosing::RunGlobalBundleAdjustment闭环全局BA优化
完成闭环矫正后, 最后一步是对所有的地图点和关键帧位姿进行全局BA 优化。原创 2024-12-24 07:59:50 · 185 阅读 · 0 评论 -
ORB-SLAM2源码学习:LoopClosing.cc:LoopClosing::Run 闭环检测线程主入口函数
这是回环检测线程的主入口函数。原创 2024-12-23 07:53:53 · 279 阅读 · 0 评论